Asphalt Concrete

[Types]

Walied A. Elsaigh
welsaigh@ksu.edu.sa
Assistant Professor of Civil Engineering
Rabi 1-1433H
Selected Topics on TR Engineering - CE599

Introduction

- Aggregate
- Bitumen
- Asphalt Concrete

Approx. 95% (by weight)
Approx. 5% (by weight)
Heat (HMA)
Cutback
Emulsion
Types of Asphalt Concrete Mixes

- Continuously (Dense) Graded Asphalt mix
- Gap-Graded mix
- Porous Asphalt mix
- Sand Asphalt mix
- Stone Mastic Asphalt mix
- Modified Binder Asphalt mix
- Slurry Seal mix
Typical Grading Used in AC

Continuously (Dense) Graded Mix

Grading approaches the maximum density

Idea revolve about smaller particles fit into the voids of larger Particles, to obtain a condition approaching zero voids.
Cont. Continuously (Dense) Graded Mix

- Dense-grading provides close aggregate to aggregate contact, thus, load carrying capacity and resistance to deformation is given by the aggregate skeleton.

- At high temperature, bitumen will soften and the deformation resistance will rely only on the aggregate interlock.

Cont. Continuously (Dense) Graded Mix

- Skid resistance is reasonable at early stages during the life of dense-graded surfaces but deteriorate with time. This is especially true during rainy seasons. Pre-coated chip surface to increase skid resistance.

- Dense-graded asphalt concrete is used extensively here in KSA. Typical distresses manifested on surfaces of our roads includes:
 - Rutting (permanent deformations) – relates to temperature
 - Low skid resistance for aged roads – relates to mix type + aggregate strength
Gap-graded Mix

- Sand sheet mixes were altered by coarser aggregates, hence a gap occurs. The aim was to increase the stability of the mix (British standards).

- Advantage: gap-graded grading allows more voids, thus more binder, making a more durable and less permeable compared to dense-graded mixes. + higher skid-resistance.

- Load carrying capacity of gap-graded mixes is not dependent on aggregate interlock as in dense-graded mixes but to larger extent on the stiffness of the binder { hard binders are used}
Porous asphalt, also known as pervious, permeable, or open-graded asphalt, is standard hot-mix asphalt with reduced sand or fines.

Advantages:
- Allows water to drain through it (reduce storm water runoff volume and pollutants).
- Durable and cost competitive compared to traditional mixes
- Reduces noise (voids absorbs noise)
Sand Asphalt Mix

Sand asphalt mixes are usually used where suitable aggregate are scarce. {Suffers deformation resistance}

Stiff binder is used to improve deformation characteristics of this mixes.

Stone Mastic Asphalt Mix (SMA)

- SMA is a gap-graded asphalt high % of single size aggregate and sand filler.
- Celulose fibre, polymers, silicic acid to enhance binder retention. {prevent binder from draining out}
- Celulose fibre, waste paper fibre, extracts from trees ...etc. {typically 0.3 to 1.5% by mass}. various commercial names
- Aggregate size of 13.2 mm or 10 mm is used with some sand to fill voids between aggregate.{Grading is still empirical}
- Due to stone-to-stone contact is provides resistance to rutting and provides high skid-resistance.

Typical binder content is 6.5 to 7.5% by mass

Originated in Germany
Modified Binder Asphalt Mix
Rubberized-Bitumen Asphalt

- Bitumen Crumb Rubber Asphalt is a regular asphalt which contains crumb rubber obtained from tyre shredding to improve flexural and elastic recovery properties of an asphalt layer.

- Rubber shall be free from cord, wire, fluff and other deleterious material

- Asphalt-Rubber is not the solution to the waste tire problem, but when utilized by agencies that prefer its beneficial engineering characteristics such as durability, flexibility, strength, and resistance to cracking, it contributes significantly to the reduction of waste tires.

Modified Binder Asphalt Mix
Rubberized-Bitumen Asphalt

Advantages:
- Reduces Reflective Cracking in Asphalt Overlays
- Reduces Maintenance Costs
- Improves Resistance to Cracking in New Pavements
- Improves resistance to rutting in new pavements
- Decreases Noise Levels
- Consumes 500 -2,000 scrap tires per lane mile
Slurry Seal Mix

Thin layer to seal surface cracks and smoothen rough surface.

Considered as a cold mix asphalt = Fine aggregate + Emulsion
Distress Modes

- **Surfacing Distress**
 - Bleeding
 - Cracking
 - Raveling
 - Potholing
- **Deformation Distress**
 - Rutting
 - Shoving and pushing delamination
- **Surface Texture Distress**
 - Polishing

Pavement Failure
- Pavement layer can not withstand the traffic loading

Functional
- Riding quality is not acceptable

Structural

Bleeding

A shiny, black surface caused by bitumen (binder) migrating to the surface of pavement.

Consequences
- Loss of surface texture → reduction in skid resistance

Causes
- Too high bitumen content
- Low air void content + high temperature or excessive loading

Prevention → Proper design and construction

Cure
- Remove and replace the asphalt layer
- Overlay with thin skid resisting layer
Cracking

Includes the following types

- Fatigue cracking (alligator/crocodile)
- Longitudinal cracking (wheel path)
- Reflective cracking
- Thermal cracking

Cracking - Fatigue

Interconnected cracking with a pattern resembling crocodile skin.

Causes Cracks caused by heavy traffic and load repetition.

- Inadequate pavement structure
- Ageing of asphalt concrete
- Poor drainage (water ingress)

Prevention

Adequate design and construction
Regular maintenance
Use of PG bitumen

Cure:

- Fatigue cracks are indication of *structural failure*
 - Full depth reclamation
 - Adequate overlay
Cracking – Longitudinal Cracking

Cracking in the direction of flow of traffic, at the edge of wheel path

Causes: Pavement that is fatigued by
- Heavy traffic (high pressure truck tires)
- Unstable base
- Poor Construction.

Prevention
- Adequate design and construction
- Regular maintenance
- Meeting the PG requirements.

Cure:
- **Minor cracking** requires crack seal (prevent water ingress)
- **Severe cracking** indicates structural problem (full depth treatment or overlay)

Cracking – Thermal Cracking

When a pavement cools, it contracts. The internal stresses result in a series of cracks evenly spaced perpendicular (transverse) to the direction of traffic flow.

Causes
- sharp temperature drop

Prevention
- **Use of quality materials [the Superpave PG ?]**

Cure:
- If it occurs, then crack seal is necessary to prevent water ingress.
Cracking – Reflective Cracking

Cracks from existing pavement that come up through a new surface or overlay.

Causes
- Existing cracked asphalt surface

Prevention
- Remove existing surface before overlay
- Provide stress absorption membrane [geotextiles or reinforcement to bridge the crack]

Cure:
- Preventable but not curable

Raveling

Loose aggregate that ‘ravel’ from the surface of the pavement. It causes pavement depression and loose material can cause safety hazard.

Causes
- Use of dusty aggregate.
- Segregation of the mix during construction.
- Inadequate compaction
- Aged bitumen
- Stripping due to moisture damage
Cont. Raveling

Prevention
- Use clean aggregate
- Do good compaction
- Use anti-stripping agents
- Good asphalt concrete mixing
- Provide adequate drainage

Cure
- Apply surface treatment (e.g. Slurry seal)

Potholing

Potholes occur when water gets into cracks and destroys the underlying layers.

Causes
- Inadequate pavement structure
- Poor drainage
- Damage accumulation
- Aging of bitumen

Prevention
- Proper pavement design
- Adequate drainage
- Use quality materials

Cure
- We need to fix the cause and then we can patch the pothole
Rutting is permanent deformation of the pavement surface at Slow lane/truck lane {channelized at wheel path}, and at intersections {stopping vehicles}.

Causes
- Heavy slow-moving traffic
- Stopping traffic
- Poor aggregate
- Poor construction
- Weak base-course
- High temp. performance condition
- Post-construction – compaction by traffic

Cont. Rutting

Prevention
- Proper pavement design
- Adequate drainage
- Use quality aggregate
- Use of proper bitumen spec. (PG?)

- Rutting can be confined to the surface layer or it can extend to include the base-course layer

Cure
- We need to replace the surface if rutting confined to the surface layer
- treat the base-course and the surface layers if rutting effect extends to the lower layers
Shoving and Pushing

Pushing and Shoving is deformations of the pavement surface, most common in intersections, where there is braking and stopping traffic. It is easiest to detect at intersections where transverse striping becomes "wavy".

Sections of a surface layer become loose from the pavement

Causes
- Unstable mix {Marshall stability!}
- Breaking, stopping and accelerating vehicles
- Poor construction
- Poor interlayer bond – slippage between layers
 { tack coat, prime coat}

Cont. Shoving and Pushing

Prevention
- Proper design
- Quality aggregate and bitumen
- Proper construction
- Proper tack between layers

Cure
- Remove and replace
Polishing
Bitumen worn away from the pavement surface by traffic, eventually surface aggregate loses micro-texture and surface loses macro-texture

Causes
- Soft aggregates
- Heavy traffic

Prevention
- Use of polish resistant aggregate
- Use PG bitumen

Cure
- Overlay using a thin layer of a high macro-texture asphalt concrete {materials with various commercial names are available for this purpose}

Consequences
- Reduces skid-resistance

Rehabilitation of Pavement Surface Layer

Minor cracks
- clean and fill with hot bitumen

Major cracks (especially alligator cracks) that exist on the full depth of AC layers shall be repaired by removing the whole AC layers and Base-course layer (if needed) locally, laying down new layers and compacting.

Reinforcement is required to mitigate the risk of reflective cracks when overlying an existing cracked pavement surface
Questions