ID:_____

Take g = 9.8 ms⁻² wherever needed

Q	Multiple choice questions					
1	From Hook's law, $F = -kx$, where F is the force with dimension of (MLT ⁻²), and x is spring extended length. The dimension of the spring constant k is:					
	A) ML ⁻² T ⁻²	B) MT ²	C) MT ⁻²	D) ML ⁻² T ²		
2	A person walks first at a constant speed of 7.00 m/s along a straight line from point A to point B and then back along the line from B to A at a constant speed of 3.00 m/s. The average speed over the entire trip is:					
	A) 1.2 m/s	B) 4.2 m/s	C) 6.3 m/s	D) 9.5 m/s		
	A particle starts from rest	t at $x_i = 0$ and moves for 10	s with an acceleration	of $+2.0$ cm/s ² . For the		
	next 20 s, the acceleration of the particle is -1.0 cm/s^2 . The position of the particle at the end of this					
3	motion is:					
	A) 4 m	B) 8 m	C) 3 m	D) 9 m		
	The three forces shown ir magnitude of the resultan	t the figure act on a particle. t of these three forces?	. What is the	y 65.0 N		
4		D) 19 7 N	30.0 N ←	20.0 N		
	A) 23.8 N	B) 18.7 N	C) 55.0 N	D) 38.0 N		
	A person walks 25° north of east for 3.1 km . How far would he have to walk due north and due east to arrive at the same location?					
5	cast to arrive at the same					
	A) 2.8 km north, 1.3 km east	B) 4.2 km north, 5.3 km east	C) 5.3 km north, 4.2 km east	D) 1.3 km north, 2.8 km east		
6	A projectile is fired in such a way that its horizontal range is equal to two times its maximum height. The angle of projection is equal to: (<i>Hint:</i> $sin2\theta = 2 sin\theta cos\theta$)					
	A) 45.1°	B) 63.4°	C) 50.5°	D) 72.8°		
	The maximum range of a projectile on flat ground is 2000 m . If the same projectile is fired straight					
7	up, how high can it reach?					
	A) 1800 m	B) 1500 m	C) 1200 m	D) 1000 m		

ID:_____

8	A block lies on a frictionless incline of angle θ and is released from rest. The acceleration of the block is:						
	A) 2g/sinθ	B) g/sinθ	C) g sinθ	D) g cosθ			
	The inertia of a body tends to cause the body to:						
9	A) resist any change in its motion.	B) fall toward Earth	C) slow down.	D) speed up.			
10	l frictionless surface (in at $\theta = 45.0^{\circ}$ above the s						
	A) 4.15 m/s ²	B) 5.79 m/s ²	C) 2.65 m/s ²	D) 7.25 m/s ²			
11	tension in the string is:						
	A) 6.53 N	B) 9.80 N	C) 19.6 N	D) 39.2 N			
	m_1						
12	4.00 kg block that is slidin the coefficient of kinetic fr			<i>m</i> ₂			
12				m ₂ D) 90.2 N			
12	the coefficient of kinetic fr	B) 33.6 N urved road, which has banking angle of 31° . beed without slipping	nsion in the string.				

ID:_____

	What happens to the kinetic energy of a moving object if the net work done is positive?						
	what happens to the kinetic energy of a moving object if the net work done is positive.						
14	A) The kinetic	B) The kinetic ener	cgy C) The kinetic	D) The kinetic			
	energy increases	decreases	energy remain	,			
			the same				
	A spring hanging vertica	d. The other end of this					
15	spring is firmly fixed to the ceiling. Taking the spring constant 400 N/m, calculate the work done						
15	by the spring.						
		\mathbf{D} 5.2 I		\mathbf{D}			
	A) -12 J	B) 5.3 J	C) -2 J	D) 7.4 J			
	A box of mass 2.00 kg is		k = 6400 N/m	m = 2 Kg			
	constant $\mathbf{k} = 6400 \text{ N/m}$. It	-	F				
	the right on a horizontal frictionless surface for 10 cm , then it released from the rest. What						
16	is the speed of this box wl						
	the equilibrium position ($x = 0$) of the spring?		$\begin{array}{c} 10 \mathbf{cm} \rightarrow 10 \mathbf{cm} 10 \mathbf{cm} \rightarrow 10 \mathbf{cm} 10 10 \mathbf{cm} 10 10 \mathbf{cm} 10$				
			́. "Х	5 = 0			
	A) 5.7 m/s	B) 8.7 m/s	C) 3.2 m/s	D) 9.1 m/s			
17	A man weighing 600N climbs a 10 m vertical rope at a constant speed in 8 s. His power o						
17	A			D) 1500 W			
	A) 500 W	B) 750 W	C) 1000 W	D) 1500 W			
	When a box of mass, m , is pulled a distance, d , along a rough horizontal surface with coefficient						
	of kinetic friction, μ_k , then pulled back along the same path to its original position. The total energy						
18	lost due to friction is:						
	A) Zero	B) µ _k mgd	C) 2 µ _k mgd	D) Not enough			
	,		, 14 0	information to know			
		1 1	<u> </u>				
	A 0.40 kg particle moves under the influence of a single conservative force. At point <i>A</i> where the particle has a speed of 10 m/s, the potential energy associated with the conservative force is 40 J.						
10	As the particle moves from <i>A</i> to <i>B</i> , the force does 25 J of work on the particle. What is the value						
19	of the potential energy at point B ?						
	of the potential energy at						
	A) 65 J	B) 15 J	C) 35 J	D) 45 J			
	A 0.60 kg object is susper	nded from the ceiling a	at the end of a 2.0 m string.	When pulled to the side			
	and released, it has a speed of 4.0 m/s at the lowest point of its path. What maximum angle does						
20	the string make with the vertical as the object swings up?						
		D) 52 52					
	A) 61.2°	B) 53.7°	C) 69.5°	D) 77.4°			

A golf ball is struck by a golf club and falls on a green (المنطقة المحيطة بحفرة الجولف) three meters above the point where the ball is struck. The potential energy of the Earth-ball system is greatest: 21 h = 3.0 m A) just before the ball is struck B) just after the ball is struck C) just after the ball lands on the green D) when the ball reaches the highest point in its flight An object which weighs 10N is dropped from rest, a height of 4 m above the ground. when it has 22 free-fallen 1m its total mechanical energy with respect to the ground is: D) 30 J A) 25 J B) 10 J C) 40 J The two masses in the figure are released from rest. After the **3.0 kg** mass 2 kg has fallen 1.5 m, it is moving with a speed of 3.8 m/s. How much work is done during this time interval by the frictional force on the 2.0 kg 23 mass? 3 kg D) -20 J A) -8 J B) -12 J C) -18 J A 2.00 kg block situated on a rough incline is connected to a spring k = 100 N/mof negligible mass having a spring constant of 100 N/m (see Figure). 2.00 kg The pulley is frictionless. The block is released from rest when the spring is unstretched. The block moves 20.0 cm down the incline 24 before coming to rest. Then the coefficient of kinetic friction between block and incline is (take θ =37°): A) 0.309 B) 0.042 C) 0.115 D) 0.250 A 60 kg man stands at rest on frictionless ice and throw an object of 5 kg horizontally at 3 m/s. With what velocity does the man move across the ice after throwing the object? 25 A) 4 m/s B) 2 m/sC) - 0.5 m/s D) - 0.25 m/sA 3.00 kg stone is dropped from a high building. When the stone strikes the floor, at a velocity 20 m/s, it bounces up, at a velocity equal to 1 m/s. What is the impulse exerted on the stone by the 26 floor? A) - 63 kg m/sB) - 31 kg m/sC) 16 kg m/s D) 62 kg m/s Two objects are at rest on a frictionless surface. Object 1 has a greater mass than object 2. When a force is applied to object 1, it accelerates for a time interval (Δt). The force is removed 27 from object 1 and is applied to object 2. After object 2 has accelerated for the same time interval (Δt) , which statement is true? (P: momentum, K: kinetic energy) B) P1 = P2D) K1 = K2A) P1 < P2C) K1 > K2The End

ID: