Take $\mathbf{g}=\mathbf{9 . 8} \mathbf{~ m s}^{-2}$ wherever needed

\mathbf{Q}	Multiple choice questions			
	From Hook's law, $\boldsymbol{F}=\boldsymbol{k} \boldsymbol{x}$, where F is the force with dimension of $\left(\mathbf{M L T}^{-2}\right)$, and \boldsymbol{x} is spring extended length. The dimension of the spring constant \boldsymbol{k} is:			
	A) $\mathrm{ML}^{-2} \mathrm{~T}^{-2}$	B) MT^{2}	C) MT^{-2}	

A truck covers $\mathbf{4 0} \mathbf{m}$ in $\mathbf{8 . 5 0} \mathbf{s}$ while smoothly slowing down to a final speed of $\mathbf{2 . 8 0} \mathbf{~ m} / \mathbf{s}$. The initial speed for the truck is:
2
A) $1.2 \mathrm{~m} / \mathrm{s}$
B) $6.6 \mathrm{~m} / \mathrm{s}$
C) $5.3 \mathrm{~m} / \mathrm{s}$
D) $9.5 \mathrm{~m} / \mathrm{s}$

The height of a helicopter above the ground is given by $\boldsymbol{y}=\mathbf{3 t ^ { 3 }}$, where \boldsymbol{y} is in meters and \boldsymbol{t} is in seconds. After hovering up for $\mathbf{2} \mathbf{s}$, the helicopter releases a small box. How long after its release does the box reach the ground?
A) 3.55 s
B) 7.96 s
C) 16.88 s
D) 9.35 s

A man pushing a box across a floor causes it to undergo two displacements. The first (A) has a magnitude of $\mathbf{1 5 0} \mathbf{~ c m}$ and makes an angle of $\mathbf{1 2 0}^{\circ}$ with the positive \boldsymbol{x} axis. The resultant displacement (\mathbf{R}) has a magnitude of $\mathbf{1 4 0} \mathbf{~ c m}$ and is directed at an angle of $\mathbf{3 5 . 0 ^ { \circ }}$ to the positive \boldsymbol{x} axis. The magnitude of the second displacement (\mathbf{B}) is:

A) 196 cm
B) 187 cm
C) 155 cm
D) 220 cm

Vector A has \boldsymbol{x} and \boldsymbol{y} components of $\mathbf{- 8 . 7} \mathbf{~ c m}$ and $\mathbf{1 5} \mathbf{~ c m}$, respectively; vector \mathbf{B} has \boldsymbol{x} and \boldsymbol{y} components of $\mathbf{1 3 . 2} \mathbf{~ c m}$ and $\mathbf{- 6 . 6} \mathbf{~ c m}$, respectively. If $\mathbf{A}-\mathbf{B}+\mathbf{3 C}=\mathbf{0}$, the components of vector \mathbf{C} are:
A) $3.2 \mathbf{i},-4.1 \mathbf{j}$
B) $7.3 \mathbf{i},-7.2 \mathbf{j}$
C) $-6.7 \mathbf{i}, 4.1 \mathbf{j}$
D) $-3.6 \mathbf{i}, 5.1 \mathbf{j}$

A ball is thrown from a window of a building. The ball is given an initial velocity of $\mathbf{8} \mathbf{~ m} / \mathbf{s}$ at an angle of $\mathbf{2 0}{ }^{\circ}$ below the horizontal. It strikes the ground $\mathbf{3} \mathbf{s}$ later. How far horizontally from the base of the building does the ball strike the ground?
A) 22.6 m
B) 30.4 m
C) 43.3 m
D) 35.8 m

A particle moves at a constant speed in a circular path with a radius of $\mathbf{2} \mathbf{~ c m}$. If the particle makes

7 four revolutions each second, the magnitude of its acceleration is:
A) $14.1 \mathrm{~m} / \mathrm{s}^{2}$
B) $5.5 \mathrm{~m} / \mathrm{s}^{2}$
C) $12.6 \mathrm{~m} / \mathrm{s}^{2}$
D) $15.9 \mathrm{~m} / \mathrm{s}^{2}$

In projectile motion, which of the following quantities stay constant during the event:
A) Gravitational
B) Projectile's
horizontal velocity only
C) Gravitational
acceleration only
D) Gravitational acceleration and projectile's vertical velocity

A force is applied on a first object its mass is \mathbf{M} and produces an acceleration \mathbf{a}. The same force
9 is applied on a second object its mass is $\mathbf{3 M}$. What is the acceleration of the second object?
A) $\frac{1}{3} \mathrm{a}$
B) 3 a
C) \mathbf{a}
D) $4 \mathbf{a}$

Two forces act on a $\mathbf{M}=\mathbf{4} \mathbf{~ k g}$ block resting on a frictionless surface as shown the Figure. What is the magnitude of the horizontal acceleration of the block?

A) $8.0 \mathrm{~m} / \mathrm{s}^{2}$
B) $4.0 \mathrm{~m} / \mathrm{s}^{2}$
C) $2.0 \mathrm{~m} / \mathrm{s}^{2}$
D) $9.8 \mathrm{~m} / \mathrm{s}^{2}$

If $\mathbf{F}=\mathbf{4 0} \mathbf{N}$ and $\mathbf{M}=\mathbf{2} \mathbf{~ k g}$, what is the magnitude of the acceleration of the suspended object? All surfaces are frictionless.

A) $0.2 \mathrm{~m} / \mathrm{s}^{2}$
B) $5.0 \mathrm{~m} / \mathrm{s}^{2}$
C) $1.5 \mathrm{~m} / \mathrm{s}^{2}$
D) $2.5 \mathrm{~m} / \mathrm{s}^{2}$

A block of mass \mathbf{M} is pulled at constant velocity along a rough horizontal floor by an applied force \mathbf{T} as shown in the Figure. The magnitude of the frictional force is:
12

A) $T \cos \theta$
B) $\mathrm{Mg}-\mathrm{T} \sin \theta$
C) Mg
D) $\mathrm{Mg} \cos \theta$

A body of mass 10 kg moves with a velocity of $5 \mathrm{~m} / \mathrm{s}$ in a circle of radius 5 m , what is the centripetal force of the body?
A) 5 N
B) 25 N
C) 0.5 N
D) 50 N

A $2 \mathbf{k g}$ ball attached to a string is made to move in a circular as shown in the Figure, if the tension in string is $\mathbf{2 3 . 1} \mathbf{N}$ the centripetal force is:

14

A) 11.6 N
B) 5.8 N
C) 23.1 N
D) 20 N

The force of an ideal spring exerts on an object is given by $\boldsymbol{F}_{\mathbf{x}}=-\boldsymbol{k} \boldsymbol{x}$, where \boldsymbol{x} measures the displacement of the object from its equilibrium $(\boldsymbol{x}=\mathbf{0})$ position. If $\boldsymbol{k}=\mathbf{6 0} \mathbf{N} / \mathbf{m}$, how much work is
15 done by this force as the object moves from $\boldsymbol{x}=\mathbf{- 0 . 2 0} \mathrm{m}$ to $\boldsymbol{x}=\mathbf{0}$?
A) -2.4 J
B) -1.2 J
C) +2.4 J
D) +1.2 J

Equal amounts of work are performed on two bodies, \mathbf{A} and \mathbf{B}, initially at rest, and of masses \boldsymbol{M} and $\mathbf{2 M}$ respectively. The relation between their speeds immediately after the work has been done on them is:
A) $v_{\mathrm{A}}=2 v_{\mathrm{B}}$.
B) $v_{\mathrm{A}}=\sqrt{2} v_{\mathrm{B}}$
C) $v_{\mathrm{A}}=v_{\mathrm{B}}$
D) $v_{\mathrm{B}}=\sqrt{2} v_{\mathrm{A}}$

A box weighing $\mathbf{6 0 0 0} \mathrm{N}$ is pulled across a flat surface by means of a horizontal rope. The coefficient of kinetic friction is $\mathbf{0 . 0 5}$. The work done by the man in pulling the box $\mathbf{1 0 0 0} \mathbf{~ m}$ at constant velocity
17 is:
A) $3.1 \times 10^{4} \mathrm{~J}$
B) $1.5 \times 10^{5} \mathrm{~J}$
C) $2.9 \times 10^{6} \mathrm{~J}$
D) $3.0 \times 10^{5} \mathrm{~J}$

A person vertically holds an $\mathbf{8 0} \mathbf{N}$ weight $\mathbf{2 ~ m}$ above the floor for $\mathbf{3 0}$ seconds. The power required to do this is:
A) 80 W
B) 0 W
C) 40 W
D) 20 W

A 0.04 kg ball is thrown from the top of a $\mathbf{3 0} \mathrm{m}$ tall building (point $\mathbf{A)}$ at an unknown angle above the horizontal. As shown in the Figure, the ball reaches a maximum height of $\mathbf{1 0} \mathbf{m}$ above the top of the building before striking the ground at point \mathbf{B}. If air resistance is negligible, what is the value of the kinetic energy of the ball at \mathbf{B} minus the kinetic energy of the ball at \mathbf{A} (i.e. $\mathrm{K}_{\mathrm{B}}-\mathrm{K}_{\mathrm{A}}$)?

A) -15.7 J
B) +15.7 J
C) +11.7 J
D) -11.7 J

A stone is pushed vertically against a spring a distance \boldsymbol{d}. When released, its maximum height above the ground is $\boldsymbol{h}_{\boldsymbol{1}}$. If the same stone is pushed against the same spring a distance $2 \boldsymbol{d} \boldsymbol{d}$, then its maximum height \boldsymbol{h}_{2} above the ground is:
A) $h_{2}=4 h_{1}$
B) $h_{2}=h_{1}$
C) $h_{2}=2 h_{1}$
D) $h_{2}=8 h_{1}$

A block with initial velocity $\mathbf{v}_{\mathbf{i}}$ slides across a rough horizontal tabletop through a distance \boldsymbol{d}. One of the following is correct:
A) $\Delta E_{\text {mech }}=0$
B) $\Delta K=0$
C) $\Delta K=-f_{k} d$
D) $\Delta E_{\text {mech }}=f_{k} d$

A $\mathbf{4 0} \mathbf{~ k g}$ boy slides down a ramp. The ramp is $\mathbf{8} \mathbf{~ m}$ in length and inclined at an angle of $\mathbf{3 0}^{\circ}$. The boy starts from rest at the top, experiences a constant friction force of magnitude $\mathbf{1 1 5} \mathbf{N}$. How fast is he traveling when he reaches the bottom?
A) $8.85 \mathrm{~m} / \mathrm{s}$
B) $5.69 \mathrm{~m} / \mathrm{s}$
C) $12.5 \mathrm{~m} / \mathrm{s}$
D) $6.78 \mathrm{~m} / \mathrm{s}$

The potential energy of an object constrained to the \boldsymbol{x} axis is given by $\boldsymbol{U}(\boldsymbol{x})=\boldsymbol{8 x}^{\mathbf{2}}-\boldsymbol{x}^{\mathbf{3}}$. The force
$23 \quad \boldsymbol{F}$ associated with this potential energy function is:
A) $8 x^{2}-x^{3}$
B) $16 x-3 x^{2}$
C) $-16 x+3 x^{2}$
D) $16 x+3 x^{2}$

A $2.4 \mathbf{k g}$ ball falling vertically hits the floor with a velocity of $\mathbf{- 2 . 5 j} \mathbf{~ m} / \mathbf{s}$ and rebounds with a velocity of $\mathbf{1 . 5 j} \mathbf{~ m} / \mathbf{s}$. What is the magnitude of the impulse exerted on the ball by the floor?
A) $9.6 \mathrm{~N} \cdot \mathrm{~s}$
B) $2.4 \mathrm{~N} \cdot \mathrm{~s}$
C) $6.4 \mathrm{~N} \cdot \mathrm{~s}$
D) $1.6 \mathrm{~N} \cdot \mathrm{~s}$

A billiard struck ball (الكرة الضاربة) moving at 5 m/s strikes a stationary ball (كرة ساكنه) of the same mass. After the collision, the
 original line of motion, as shown in the Figure. Assuming an
25 elastic collision (and ignoring friction and rotational motion). Then, the struck ball's velocity ($\mathbf{v}_{2} f$) after the collision is:

A) $20.1 \mathrm{~m} / \mathrm{s}$
B) $9.4 \mathrm{~m} / \mathrm{s}$
C) $4.5 \mathrm{~m} / \mathrm{s}$
D) $2.5 \mathrm{~m} / \mathrm{s}$

A $6 \mathbf{k g}$ object moving $5 \mathrm{~m} / \mathrm{s}$ collides with and sticks to an $\mathbf{2} \mathbf{~ k g}$ object. After the collision the composite object is moving $2 \mathrm{~m} / \mathbf{s}$ in a direction opposite to the initial direction of motion of the $\mathbf{6} \mathbf{~ k g}$ object. Determine the speed of the $\mathbf{2} \mathbf{~ k g}$ object before the collision.
A) $15 \mathrm{~m} / \mathrm{s}$
B) $7 \mathrm{~m} / \mathrm{s}$
C) $11 \mathrm{~m} / \mathrm{s}$
D) $23 \mathrm{~m} / \mathrm{s}$

Two objects are at rest on a frictionless surface. Object 1 has a greater mass than object 2. When a force is applied to object $\mathbf{1}$, it accelerates for a time interval (\mathbf{t}). The force is removed from object $\mathbf{1}$ and is applied to object 2. After object 2 has accelerated for the same time interval (t), which statements are true? (P: momentum, K: kinetic energy)
A) $\mathrm{P}_{1}<\mathrm{P}_{2}$
B) $\mathrm{P}_{1}>\mathrm{P}_{2}$
C) $\mathrm{K}_{1}<\mathrm{K}_{2}$
D) $K_{1}=K_{2}$

The End

