ID:_____

Take g = 9.8 ms⁻² wherever needed

Q	Multiple choice questions					
	From Hook's law, $F = -kx$, where F is the force with dimension of (MLT ⁻²), and x is spring extended					
1	length. The dimension of the spring constant k is:					
	A) MI $-2T-2$	B) MT ²	C) MT ⁻²	D) MI $-2T^{2}$		
	A) WL 1 ⁻ D) WL ⁻ C) WL ⁻ D) ML ⁻ D) ML ⁻					
	initial speed for the truck is:					
2						
	A) 1.2 m/s	B) 6.6 m/s	C) 5.3 m/s	D) 9.5 m/s		
	The height of a helicopter above the ground is given by $y = 3t^3$, where y is in meters and t is in					
2	seconds. After hovering up for 2 s, the helicopter releases a small box. How long after its rele					
3	does the box reach the g	round?	()	D) 0.25		
	A) 3.55 s	B) 7.96 s	C) 16.88 s	D) 9.35 s		
	A man pushing a box	across a floor causes it	to undergo two	у		
	displacements. The first	(A) has a magnitude of 150	cm and makes an	θ_{\downarrow}		
	angle of 120° with the p	ositive <i>x</i> axis. The resultant	displacement (R)	B		
4	has a magnitude of 140	cm and is directed at an any	gle of 35.0° to the	$\mathbf{R} = \mathbf{A} + \mathbf{B}$		
	positive x axis. The magnitude of the second displacement (B) is: A 120° $R = A + B$ $35 0^{\circ}$					
	A) 196 cm	B) 187 cm	C) 155 cm	D) 220 cm		
	Vector A has x and y components of -8.7 cm and 15 cm, respectively; vector B has x and y					
5	are:	and –o.o cm , respectively.	$II \mathbf{A} - \mathbf{B} + \mathbf{3C} = 0, \text{ tr}$	te components of vector C		
	A) 3.2 i, -4.1 j	B) 7.3 i, -7.2 j	C) -6.7 i, 4.1 j	D) -3.6 i, 5.1 j		
	A ball is thrown from a	window of a building. The	ball is given an init	tial velocity of 8 m/s at an		
	angle of 20° below the horizontal. It strikes the ground 3 s later. How far horizontally from the					
6	of the building does the	ball strike the ground?				
			\sim 12.2			
	A) 22.6 m	B) 30.4m	C) 43.3 m	D) 35.8 m		
	A particle moves at a constant speed in a circular path with a radius of 2 cm. If the particle makes four revolutions each second the magnitude of its acceleration is:					
7	A) 14 1 m/s ²	B) 5.5 m/s ²	C) 12.6 m/s^2	D) 15.9 m/s ²		
	<i>T</i> () 17.1 III/5	D) 5.5 m/5	C) 12.0 III/3	D) 15.9 m/5		
	In projectile motion, which of the following quantities stay constant during the event:					
8	A) Gravitational	B) Projectile's	C) Gravitational	D) Gravitational		
	acceleration and	horizontal velocity only	acceleration only	acceleration and		
	projectile's horizontal			projectile's		
	velocity			vertical velocity		

Name: • _____

ID:_____

	A force is applied on a first object its mass is M and produces an acceleration a . The same force					
9	is applied on a second object its mass is 3M . What is the acceleration of the second object?					
	A) $\frac{1}{3}$ a	B) 3 a	C) a	D) 4 a		
	Two forces act on a $\mathbf{M} = 4 \text{ kg}$ block resting on a frictionless 5.9 N					
	surface as shown the Figure. What is the magnitude of the					
10	horizontal accelerat	tion of the block?	3.7 N	$\rightarrow M$ $\swarrow 1^{43^{\circ}}$		
10			645/89	164154927641549276		
	A) 8.0 m/s ²	B) 4.0 m/s ²	C) 2.0 m/s ²	D) 9.8 m/s ²		
	If $\mathbf{F} = 40$ N and $\mathbf{M} = 2$ kg, what is the magnitude of the acceleration					
	of the suspended of	oject? All surfaces are friction	iless.	30° 2M		
				2		
11						
11						
				М		
	A) 0.2 m/s^2	B) 5.0 m/s ²	C) 1.5 m/s ²	D) 2.5 m/s^2		
	A block of mass M is pulled at constant velocity along					
	a rough horizontal floor by an applied force T as shown					
	in the Figure. The magnitude of the frictional force is: $M = \frac{\theta}{1-\theta}$					
12			C1 5 105/101			
				STACE VETTORS		
	A) T cosθ	B) Mg - T sinθ	C) Mg	D) Mg cosθ		
	A body of mass 10 kg moves with a velocity of 5 m/s in a circle of radius 5 m, what is the centri					
13 force of the body?						
10	A) 5 N	B) 25 N	C) 0 5 N	D) 50 N		
	A 2 kg ball attached	d to a string is made to move i	in a circular as shown	2)0011		
	in the Figure, if the	tension in string is 23.1 N the	e centripetal force is:	1		
				30 %		
14						
	A) 11 6 N	D) 5 9 M	C) 22 1 N			
	A) 11.0 N	D) 3.0 N	C) 25.1 N	D) 20 N		

Name: • _____

ID:_____

	1				
	The force of an ideal	spring exerts on an obje	ct is given by $F_x = -kx$, where x measures the	
15	displacement of the object from its equilibrium ($x = 0$) position. If $k = 60$ N/m, how much work is done by this force as the object moves from $x = -0.20$ m to $x = 0$?				
13					
	A) -2.4 J	B) -1.2 J	C) +2.4 J	D) +1.2 J	
	Equal amounts of wor	odies, A and B, initially a	at rest, and of masses M		
10	and 2M respectively. The relation between their speeds immediately after the work has been done				
10	on them is:				
	A) $v_{\rm A} = 2v_{\rm B}$.	B) $v_{\rm A} = \sqrt{2} v_{\rm B}$	C) $v_{\rm A} = v_{\rm B}$	D) $v_{\rm B} = \sqrt{2} v_{\rm A}$	
	A box weighing 6000 N is pulled across a flat surface by means of a horizontal rope. The coefficient of kinetic friction is 0.05 . The work done by the man in pulling the box 1000 m at constant velocity				
17					
1/	15.				
	A) $3.1 \times 10^4 \text{ J}$	B) $1.5 \times 10^5 \text{ J}$	C) 2.9 × 10 ⁶ J	D) 3.0×10^5 J	
A person vertically holds an 80 N weight 2 m above the floor for 30 seconds . The powe					
18	to do this is:				
	A) 80 W	B) 0 W	C) 40 W	D) 20 W	
	A 0.04 kg ball is throw	wn from the top of a 30 m t	tall building		
	(point A) at an unknown angle above the horizontal. As $A = 10 \text{ m}^{-1}$				
shown in the Figure, the ball reaches a maximum height of 10 m above the top of the building before striking the ground at point B . If air resistance is negligible, what is the value of					
					the kinetic energy of the ball at B minus the kinetic energy
	of the ball at A (i.e. $K_B - K_A$)?				
	A) -15.7 J	B) +15.7 J	C) +11.7 J	D) -11.7 J	
A stone is pushed vertically against a spring a distance <i>d</i> . When released, its max				ed, its maximum height	
20	above the ground is h_1 . If the same stone is pushed against the same spring a distance $2d$, the maximum height h_2 above the ground is:				
	A) $h_2 = 4h_1$	B) $h_2 = h_1$	C) $h_2 = 2h_1$	D) $h_2 = 8h_1$	
	A block with initial ve	elocity v _i slides across a ro	ugh horizontal tabletop th	rough a distance <i>d</i> . One	
21	of the following is correct:				
	A) $\Delta E_{mech} = 0$	B) $\Delta K = 0$	C) $\Delta K = -f_k d$	D) $\Delta E_{mech} = f_k d$	
L	,			,	

Name: • _____

ID:_____

	A 40 kg boy slides down a ramp. The ramp is 8 m in length and inclined at an angle of 30°. The				
22	22 boy starts from rest at the top, experiences a constant friction force of magnitude 115 N. How is he traveling when he reaches the bottom?				
	A) 8.85 m/s	B) 5.69 m/s	C) 12.5 m/s	D) 6.78 m/s	
	The potential energy of an object constrained to the x axis is given by $U(x) = 8x^2 - x^3$. The force				
23	F associated with this potential energy function is:				
	A) $8x^2 - x^3$	B) $16x - 3x^2$	C) $-16x + 3x^2$	D) $16x + 3x^2$	
	A 2.4 kg ball falling vertically hits the floor with a velocity of -2.5j m/s and rebounds wi				
24	velocity of 1.5j m/s . What is the magnitude of the impulse exerted on the ball by the floor?				
	A) 9.6 N•s	B) 2.4 N•s	C) 6.4 N*s	D) 1.6 N*s	
25	A billiard struck ball (λ_2 i i i ball (λ_2 i i ball (λ_2 i ball				
	 A 6 kg object moving 5 m/s collides with and sticks to an 2 kg object. After the collision the composite object is moving 2 m/s in a direction opposite to the initial direction of motion of the 6 kg object. Determine the speed of the 2 kg object before the collision. 				
26					
	A) 15 m/s	B) 7 m/s	C) 11 m/s	D) 23 m/s	
	Two objects are at rest on a frictionless surface. Object 1 has a greater mass than object 2 . When				
27	a force is applied to object 1, it accelerates for a time interval (t). The force is removed from object 1 and is applied to object 2. After object 2 has accelerated for the same time interval (t) which				
41	statements are true? (P: momentum, K: kinetic energy)				
	statements are true?	(P: momentum, K: kinetic	energy)	time interval (t), which	
	statements are true? A) $P_1 < P_2$	(P: momentum, K: kinetic B) $P_1 > P_2$	energy) C) $K_1 < K_2$	D) $K_1 = K_2$	

The End