
Introduction to C++ IAP 2009  

Assignment 2  
 

Ternary operator:  

 

The conditional operator ? : is also another way to evaluate 

conditions. It operates on three operands, and is thus known 

as a ternary operator. Here is an example of its usage:  

a = x < y ? x : y; 

The whole expression containing this operator (the right 

side of the assignment statement) is called a conditional 

expression, and the sub-expression before the question 

mark is called the test expression. If this test expression is 

true, the entire expression takes on the value of the 

expression immediately after the question mark. Otherwise, 

it takes on the value of the expression following the colon.  

 

Usually you only want to use this construct for choosing 

between two simple expressions for a particular value (both 

choices must be the same data type).  

 

1. Without running, explain what the following set of statements 

will do:  

bool input; 

int a; 

cin >> input >> a; 

char *choice = ( input ? "Hello World!" : "I love C++!" ); 

if( ( input ? a > 1 : a < 1 ) )  

{ 



 cout << "Why did you pick \" " << choice << "\"? " << 

endl; 

} 

else 

         { 

          cout << "Yay, you picked " << choice; 

         } 

 

2. Convert this for loop to a do-while loop.  

int sum = 0; 

for( int i = 0; i <5;i++ ) 

   sum += i; 

cout << sum; 

 

break and continue:  

Two keywords often used with loops are break and continue.  

The break keyword causes the entire construct to exit, and 

control passes to the statement immediately after the body of the 

loop.  

For example:  

for( n = 10; n > 0; n--) 

{ 

cout << n << ", "; 

if( n == 7 ) 

break; 

                           } 

In this example, only the first few values of n (the numbers 10, 9, 

8) will be executed. As soon as the value of n becomes 7, the 

loop will exit.  

 



The continue statement causes the program to skip the rest of 

the loop in the current iteration as if the end of the statement 

block had been reached, causing it to jump to the start of the 

next iteration:  

for( int n = 10; n > 0; n--) 

{ 

   if ( n == 7 )    continue; 

   cout << n << ", "; 

} 

In this example, 10, 9, and 8 will again be displayed, but as soon 

as the value of n becomes 7, control will be passed to the 

beginning of the loop body. The rest of that iteration is skipped, 

and the rest of the countdown till 1, will be displayed (so the final 

output will be “10, 9, 8, 6, 5, 4, 3, 2, 1”). When you place a 

continue command within a forloop, the increase statement (in 

this case, n--) is executed before the loop iterates again.  

3. Write a program to take in a number from a user, find its 

reciprocal and add it to a running sum (the running sum will be 0, 

when the loop initially starts). The program should repeat this 

procedure 10 times. However, if the user enters 0, the loop should 

exit, and if the user enters 1, nothing should be added. Print the 

final sum at the end of the program.  

 

switch statements:  

In lecture, the main type of conditional construct discussed was if-

else. There is another type of construct, which is also sometimes 

used, called the switch-case construct. In this construct, the value 

of a variable is compared to a set of constants, and when a 

corresponding match is found, the statements associated with 



that case are executed. It is like an if-else construct that can only 

check for equality  

For example:  

switch(number) 

{ 

case 3: cout << "Red"; break; 

case 2: cout << "Orange"; break; 

case 7: cout << "Black"; break; 

default: cout << "None of the above"; 

} 

In this switch statement, the value of the variable numberis 

compared with 3, 2 and 7, and if a match is formed, the 

corresponding color is printed. If no match is found then “None of 

the above” is printed. (The break keyword is required to end 

each caseblock except the last.)  

 

4. Using the switch-case construct write a program to input two 

numbers, display the following menu, and then print according to 

the user’s choice:  

1. Difference of two numbers  

2. Quotient of two numbers  

3. Remainder of two numbers  

For example, if the user inputs 1, then the difference of the two 

numbers should be printed.  

 

5. Find the sum of the first n terms of the following series, 

where n is a number entered by the user:  

 

 

  



 

6. Print the following pattern, using horizontal tabs to separate 

numbers in the same line. Let the user decide how many lines 

to print (i.e. what number to start at). 

 

 

 

 

 

 

 

 

Series: 

As specified in lecture, nested loops are used when for one 

repetition of a process, many repetitions of another process are 

needed. Similar to patterns, nested loops can be used to print the 

sums of nested series. For example the sum of the series 1+(1+2) 

+(1+2+3) +... can be found by adding one to a running sum for 

each execution of the inner loop, instead of printing them as you 

would for a pattern. As with patterns, the number of times the 

inner loop runs in this case depends on the value of the outer 

loop. 

 

7. Write a program that inputs two numbers x and n, and find the 

sum of the first n terms of the following series: 

x+(x +x
2

)+(x +x
2 

+x
3

) + .... 

 

8. An Angstrom number is one whose digits, when cubed, add up 

to the number itself.  

For instance, 153 is an Angstrom number, since 1
3 

+5
3 

+3
3 

=153.  

 



 

Write a program to input a number, and determine whether it is 

an Angstrom number or not.  

Hint: The modulus operator (%) will be useful here. 

 


