PHYSICS 507
ASSIGNMENT-Solutions
Prof. V. Lempesis

Hand in: Wednesday 28™ of March 2020, time: 23:59
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1. Show, that at point P, the magnetic field is given by: B = Ho — - What happens
27R (1> +4R?)
if L—>o0?
Pe
R
i
—_—
\ L |
Solution:
Pe dB
R N
—i> _dl
l ,\'__\"I’dx I
! L |
x=-L/2 x=0 x=+L/2

To solve this problem we need to apply Biot-Savart Law. We consider the elementary part dl of
the wire at a position x having length dx. Thus dl = dxX . This part is flown by a current / so at the
point P, it creates a magnetic field dB given by:
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where r is a vector having its tail (beginning) at the tail of dl and its tip (end) at the point P;. Thus

r=(0,4 0)—(x,0,0) orr=(-x, 4 0). Then
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The magnitude of r is given by r = (x2 + Rz) . Thus for the elementary magnetic field we have:
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The total magnetic field is taken by an integration we get
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If L goes to infinity then
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Suppose you have two infinite long straight wires carrying a charge with a linear
charge density 4. The two wires move at constant speed v as shown in figure.
What is the magnetic force per unit length on each wire? (10 marks)
What is the electric force on each wire? (6 marks)
How great would v have to be in order for the magnetic attraction to balance
the electric repulsion? Work out the actual number. Is it a reasonable sort of
speed? (4 marks)
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You are given that the magnetic field at a distance s from an infinitely current
carrying wire is:
1
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and the electric field at a distance s from an infinitely charged wire is
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Solution
1) The moving charged wire is equivalent to a current
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Thus each wire generates a magnetic field at a distance d away from it:
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This field is responsible for generating a force on the other wire given by:
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Thus the magnetic force per unit length is:
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i) The electric force per unit length on the second wire due to the electric
field of the first is:
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ii1) The magnetic attraction per unit length is given by:
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The electric repulsion per unit length on one wire is:
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The two forces balance when:
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This is impossible

3. Assume you have a thin wire with current /. The vector potential dA created from an
element of length dl of this wire at a point which is at a distance 7 from the element is given
by the relation:
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(1) Use this relation to calculate the vector potential at point P; in the figure of problem 1.
Assume that the distance R is far smaller than the length of the wire, i.e. R <<L.

dA =

(i1)) What will be the expression for the vector potential if the wire has infinite length?



You are given: (1+ x)”2 ~1+ %x, for x <<1,
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We consider the elementary part dl of the wire at
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a position x having length dx. Thus dl = dxX.

This part is flown by a current / so at the point P; it creates a vector potential JA given by:
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Now since R <<L we have:
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4. Find the electric field (magnitude and direction) a distance z above the center of a square loop

as shown in the figure, which carries a uniform line charge A. (Hint: Use problem 2.3 above).
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From solution of problem 2.3, the electric field from one side on point P is given by:
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But the total field at P will be made up only from the components along the z-direction so:
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5. On a straight line we place alternatively an infinite number of charges +g and —¢g at equal

distance as shown in the figure. What is the potential energy of a charge +¢ ? You are given that
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Solution:
Let the distance between two adjacent charges be d. The potential energy of the charge +q at x =0 is

given by
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