
Functional Dependencies & Functional Dependencies & Functional Dependencies & Functional Dependencies & 

NormalizationNormalizationNormalizationNormalization

Dr. Dr. Dr. Dr. BassamBassamBassamBassam HammoHammoHammoHammo



Redundancy and Normalisation

� Redundant Data

�Can be determined from other data in the database

� Leads to various problems

� INSERT anomalies

�UPDATE anomalies

�DELETE anomalies



Redundancy and Normalisation

� Normalisation

�Aims to reduce data redundancy

�Redundancy is expressed in terms of dependencies

�Normal forms are defined that do not have certain 
types of dependency



Functional Dependencies

� Redundancy is often caused by a functional dependency

� A functional dependency (FD) is a link between two sets 
of attributes in a relation

� We can normalise a relation by removing undesirable 
FDs



Functional Dependencies (FDs)

� A functional dependency X →Y holds over relation schema R if, 
for every allowable instance r of R:

t1 ∈ r,  t2 ∈ r,  πX (t1) = πX (t2)implies   πY (t1) = πY (t2)implies   πY (t1) = πY (t2)

(where t1 and t2 are tuples; X and Y are sets of attributes)

� The attribute on the left side of the functional dependency is 
called the determinant, while the  “→” reads as “determines”



Functional Dependencies

� In other words there exists a functional dependency between 
X and Y (X →→→→Y), if whenever two rows of the relation have the 
same values for all the attributes in X, then they also have the same 
values for all the attributes in Y.

� Example:
SID � DormName, Fee

(CustomerNumber, ItemNumber, Quantity) � Price

� While a primary key is always a determinant, a determinant is not 
necessarily a primary key



Normalization
� Normalization eliminates modification anomalies

� Deletion anomaly: deletion of a row loses information about two or more 
entities

� Insertion anomaly: insertion of a fact in one entity cannot be done until a 
fact about another entity is added

� Anomalies can be removed by splitting the relation into two or 
more relations; each with a different, single thememore relations; each with a different, single theme

� However, breaking up a relation may create referential 
integrity constraints

� Normalization works through classes of relations called normal 
forms



FDs and Normalisation

� We define a set of 'normal forms'

� Each normal form has fewer FDs than the last

� Since FDs represent redundancy, each normal form has less 
redundancy than the lastredundancy than the last

� Not all FDs cause a problem

� We identify various sorts of FD that do

� Each normal form removes a type of FD that is a problem

� We will also need a way to remove FDs



Reasoning About FDs
� Given some FDs, we can usually infer additional FDs:

title → studio, star implies title → studio and title → star 

title → studio and title → star implies  title → studio, star

title → studio,  studio → star implies    title → star

But,But,

title, star → studio does NOT necessarily imply that

title → studio or that star → studio

� An FD f is implied by a set of FDs F if f holds whenever all 
FDs in F hold.

� F+ = closure of  F is the set of all FDs that are implied by F.   
(includes “trivial dependencies”)



Rules of Inference
� Armstrong’s Axioms (X, Y, Z are sets of attributes):

� Reflexivity:  If  X ⊇Y,  then   X →Y 
� Augmentation:  If  X →Y,  then   XZ →YZ   for any Z
� Transitivity:  If  X →Y  and  Y → Z,  then   X → Z

� These are sound and complete inference rules for FDs!
� i.e., using AA you can compute all the FDs in F+ and only these 
FDs.

� Some additional rules (that follow from AA):
� Union:   If X →Y  and  X → Z,   then  X →YZ
� Decomposition:   If X →YZ,   then  X →Y  and  X → Z



Rules of Inference

� Rules that follow from AA:
� Union:   If X →Y  and  X → Z,   then  X →YZ

X →Y,
→ →

X Y,
XX → XY (Aug), so X → XY
X → Z,
XY →YZ (Aug) so X →YZ (Trans)



Rules of Inference

� Rules that follow from AA:
� Decomposition:   If X →YZ,   then  X →Y  and  X → Z

X →YZ,
→ →

X YZ,
YZ →Y (Reflex), so X →Y (Trans)

Similar for X → Z. 



Attribute Closure
� Computing the closure of a set of FDs can be expensive.  (Size of closure is 

exponential in # attrs!)

� Typically, we just want to check if a given FD X →Y is in the closure of a set of 
FDs F.  An efficient check:
� Compute attribute closure of X (denoted X+) wrt F.  

X+ =  Set of all attributes A such that X →A is in F+

� X+ := X� X+ := X

� Repeat until no change: if there is an fd U →V in F such that U is in X+, then add 
V to X+

� Check if Y is in X+

� Approach can also be used to find the keys of a relation.
� If all attributes of R are in the closure of X then X is a superkey for R.
� Q: How to check if X is a “candidate key”?



Attribute Closure (example)
R = {A, B, C, D, E}

F = { B →CD, D → E, B →A, E → C, AD →B }

� Is B → E in F+  ?

B+ = B
B+ = BCDB+ = BCD

B+ = BCDA

B+ = BCDAE   … Yes! and B is a key for R too!

� Is D a key for R?
D+ = D

D+ = DE

D+ = DEC … Nope!



Attribute Closure (example)
R = {A, B, C, D, E}

F = { B →CD, D → E, B →A, E → C, AD →B }

� Is AD a key for R?

AD+ = AD

AD+ = ABD and B is a key, so Yes!

• Is AD a candidate key for R?

A+ = A, D+ = DEC

A,D not keys, so Yes!

• Is ADE a candidate key  for R?

No! AD is a key, so ADE is a superkey, but not a candidate key



Normal Forms

� Any table of data is in 1NF if it meets the definition of a relation

� A relation is in 2NF if all its non-key attributes are dependent on 
all of the key (no partial dependencies)
� If a relation has a single attribute key, it is automatically in 2NF

� A relation is in 3NF if it is in 2NF and has no � A relation is in 3NF if it is in 2NF and has no 
transitive dependencies

� A relation is in BCNF if every determinant is a candidate key

� A relation is in fourth normal form if it is in BCNF and has no 
multi-value dependencies


