Functional Dependencies & Normalization

Dr. Bassam Hammo

Redundancy and Normalisation

- Redundant Data
 - Can be determined from other data in the database
 - Leads to various problems
 - INSERT anomalies
 - UPDATE anomalies
 - DELETE anomalies

Redundancy and Normalisation

- Normalisation
 - Aims to reduce data redundancy
 - Redundancy is expressed in terms of dependencies
 - Normal forms are defined that do not have certain types of dependency

Functional Dependencies

- Redundancy is often caused by a functional dependency
- A functional dependency (FD) is a link between two sets of attributes in a relation
- We can normalise a relation by removing undesirable FDs

Functional Dependencies (FDs)

 A <u>functional dependency</u> X → Y holds over relation schema R if, for every allowable instance *r* of R:

$$t1 \in r, t2 \in r, \pi_{X}(t1) = \pi_{X}(t2)$$

implies $\pi_{Y}(t1) = \pi_{Y}(t2)$

(where t1 and t2 are tuples; X and Y are sets of attributes)

The attribute on the left side of the functional dependency is called the **determinant**, while the "→" reads as "**determines**"

Functional Dependencies

- In other words there exists a functional dependency between X and Y (X → Y), if whenever two rows of the relation have the same values for all the attributes in X, then they also have the same values for all the attributes in Y.
- Example:
 - SID \rightarrow DormName, Fee

(CustomerNumber, ItemNumber, Quantity) \rightarrow Price

• While a primary key is always a determinant, a determinant is not necessarily a primary key

Normalization

- Normalization eliminates **modification anomalies**
 - **Deletion anomaly**: deletion of a row loses information about two or more entities
 - **Insertion anomaly**: insertion of a fact in one entity cannot be done until a fact about another entity is added
- Anomalies can be removed by splitting the relation into two or more relations; each with a different, single theme
- However, breaking up a relation may create referential integrity constraints
- Normalization works through classes of relations called normal forms

FDs and Normalisation

- We define a set of 'normal forms'
 - Each normal form has fewer FDs than the last
 - Since FDs represent redundancy, each normal form has less redundancy than the last
- Not all FDs cause a problem
 - We identify various sorts of FD that do
 - Each normal form removes a type of FD that is a problem
 - We will also need a way to remove FDs

Reasoning About FDs

- Given some FDs, we can usually infer additional FDs: *title* → *studio*, *star* implies *title* → *studio* and *title* → *star title* → *studio* and *title* → *star* implies *title* → *studio*, *star title* → *studio*, *studio* → *star* implies *title* → *star* But,
 - *title, star* \rightarrow *studio* does NOT necessarily imply that *title* \rightarrow *studio* or that *star* \rightarrow *studio*
- An FD f is <u>implied by</u> a set of FDs F if f holds whenever all FDs in F hold.
- F⁺ = <u>closure of F</u> is the set of all FDs that are implied by F. (includes "trivial dependencies")

Rules of Inference

- Armstrong's Axioms (X,Y, Z are <u>sets</u> of attributes):
 - <u>Reflexivity</u>: If $X \supseteq Y$, then $X \rightarrow Y$
 - <u>Augmentation</u>: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 - <u>Transitivity</u>: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
- These are *sound* and *complete* inference rules for FDs!
 - i.e., using AA you can compute all the FDs in F+ and only these FDs.
- Some additional rules (that follow from AA):
 - Union: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
 - *Decomposition*: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$

Rules of Inference

• Rules that follow from AA:

• Union: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$

 $X \rightarrow Y$, $XX \rightarrow XY$ (Aug), so $X \rightarrow XY$ $X \rightarrow Z$, $XY \rightarrow YZ$ (Aug) so $X \rightarrow YZ$ (Trans)

Rules of Inference

• Rules that follow from AA:

• *Decomposition*: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$

 $X \rightarrow YZ$, $YZ \rightarrow Y$ (Reflex), so $X \rightarrow Y$ (Trans)

Similar for $X \rightarrow Z$.

Attribute Closure

- Computing the closure of a set of FDs can be expensive. (Size of closure is exponential in # attrs!)
- Typically, we just want to check if a given FD $X \rightarrow Y$ is in the closure of a set of FDs *F*. An efficient check:
 - Compute <u>*attribute closure*</u> of X (denoted X^+) wrt *F*.
 - $X^+ =$ Set of all attributes A such that $X \rightarrow A$ is in F^+
 - $X^+ := X$
 - Repeat until no change: if there is an fd $U \rightarrow V$ in F such that U is in X^+ , then add V to X^+
 - Check if Y is in X⁺
 - Approach can also be used to find the keys of a relation.
 - If all attributes of R are in the closure of X then X is a superkey for R.
 - Q: How to check if X is a "candidate key"?

Attribute Closure (example) $R = \{A, B, C, D, E\}$ $F = \{ B \rightarrow CD, D \rightarrow E, B \rightarrow A, E \rightarrow C, AD \rightarrow B \}$ • Is $B \rightarrow E$ in F^+ ? $B^+ = B$ $B^+ = BCD$ $B^+ = BCDA$ $B^+ = BCDAE$... Yes! and B is a key for R too! • Is D a key for R? $D^+ = D$ $D^+ = DE$ $D^+ = DEC \dots Nope!$

Attribute Closure (example)

- $R = \{A, B, C, D, E\}$
- $F = \{ B \rightarrow CD, D \rightarrow E, B \rightarrow A, E \rightarrow C, AD \rightarrow B \}$
- Is AD a key for R?
 - $AD^+ = AD$
 - $AD^+ = ABD$ and B is a key, so Yes!
- Is AD a *candidate* key for R?
 A⁺ = A, D+ = DEC
 A,D not keys, so Yes!
- Is ADE a *candidate* key for R?
 No! AD is a key, so ADE is a superkey, but not a candidate key

Normal Forms

- Any table of data is in 1NF if it meets the definition of a relation
- A relation is in 2NF if all its non-key attributes are dependent on all of the key (no **partial dependencies**)
 - If a relation has a single attribute key, it is automatically in 2NF
- A relation is in 3NF if it is in 2NF and has no transitive dependencies
- A relation is in BCNF if every determinant is a candidate key
- A relation is in fourth normal form if it is in BCNF and has no multi-value dependencies