Functional Dependencies &

Normalization

Dr. Bassam Hammo




Redundancy and Normalisation

¢ Redundant Data
® Can be determined from other data in the database

® Leads to various problems
INSERT anomalies

UPDATE anomalies
DELETE anomalies




Redundancy and Normalisation

® Normalisation
® Aims to reduce data redundancy
o Redundancy is expressed in terms of dependencies

® Normal forms are defined that do not have certain

types of dependency




Functional Dependencies

o Redundancy is often caused by a functional dependency

e A functional dependency (FD) is a link between two sets

of attributes in a relation

® We can normalise a relation by removing undesirable

FDs




Functional Dependencies (FDs)

* A functional dependency X —Y holds over relation schema R if,
for every allowable instance r of R:

tl €r, t2 €1, T, (t]) = T, (t2)
implies 7, (¢1) = 7, (t2)

(where t1 and t2 are tuples; X andY are sets of attributes)

® The attribute on the left side of the functional dependency is
called the determinant, while the “—” reads as “determines”




Functional Dependencies

® In other words there exists a functional dependency between
XandY (X —Y), if whenever two rows of the relation have the

same values for all the attributes in X, then they also have the same

values for all the attributes inY.

* Example:
SID = DormName, Fee
(CustomerNumber, ItemNumber, Quantity) = Price

® While a primary key is always a determinant, a determinant is not

necessarily a primary key




Normalization

® Normalization eliminates modification anomalies

e Deletion anomaly: deletion of a row loses information about two or more
entities

e Insertion anomaly . insertion of a fact in one entity cannot be done until a
fact about another entity is added

® Anomalies can be removed by splitting the relation into two or
more relations; each with a different, single theme
® However, breaking up a relation may create referential

integrity constraints

® Normalization works through classes of relations called normal
forms




FDs and Normalisation

® We define a set of '"normal forms'
® Each normal form has fewer FDs than the last

® Since FDs represent redundancy, each normal form has less

redundancy than the last
* Not all FDs cause a problem
® We identity various sorts of FD that do
® Each normal form removes a type of FD that is a problem

® We will also need a way to remove FDs




Reasoning About FDs

® Given some FDs, we can usually infer additional FDs:
title — studio, star implies title — studio and title — star
title —> studio and title —> star implies title —> studio, star

title —> studio, studio —» star implies rtitle —> star

But

b/

title, star —> studio does NOT necessarily imply that
title —> studio or that star — studio

® An FD fis implied by a set of FDs F if f holds whenever all
FDs in F hold.

o F* = (Josure of I is the set of all FDs that are implied by F.

(includes “trivial dependencies”)




Rules of Inference

* Armstrong’s Axioms (X, Y, Z are sets of attributes):
° Rgﬂexivit/v: If X2Y, then X—>Y

b/

® Augmentation: If X =Y, then XZ —YZ foranyZ
® Transitivity: If X =Y and Y = Z, then X —7Z

® These are sound and complete inference rules for FDs!

® i.c., using AA you can compute all the FDs in F+ and only these
FDs.

® Some additional rules (that follow from AA):
® Union: X —Y and X > Z, then X =>YZ
® Decomposition: It X —>YZ, then X =Y and X = Z




Rules of Inference

® Rules that follow from AA:
® Union: f X —Y and X > Z, then X =>YZ

X =Y,

XX — XY (Aug), so X = XY
X—>7Z,

XY =YZ (Aug) so X = YZ (Trans)




Rules of Inference

e Rules that follow from AA:
® Decomposition: It X —>YZ, then X =Y and X = Z

X —YZ,
YZ —Y (Reflex), so X =Y (Trans)

Similar for X — Z.




Attribute Closure

* Computing the closure of a set of FDs can be expensive. (Size of closure is
exponential in # attrs!)

* Typically, we just want to check if a given FD X —7Yis in the closure of a set of
FDs F. An efticient check:

* Compute attribute closure of X (denoted X™) wrt F
X = Set of all attributes A such that X — A isin F"

X=X
Repeat until no change: if there is an fd U —V in F such that U is in X, then add
Vto X"

® CheckifY isin X*

® Approach can also be used to find the keys of a relation.
If all attributes of R are in the closure of X then X is a superkey for R.
Q: How to check if X is a “candidate key”?




Attribute Closure (example)

R={AB,C,D,E}
F={B—>CD,D—EB—AE— CAD —B}
* sB—>EinF"?

B" =8B

BT =BCD

BT = BCDA

B™ = BCDAE ...Yes! and B is a key for R too!
® Is D akey for R?

D"=D

D™ = DE

D" = DEC ... Nope!




Attribute Closure (example)

R={A,B,C,D,E
F={B—CD,D—EB—AE—CAD —B}
e Is AD a key for R?

AD* = AD

AD* = ABD and B is a key, so Yes!

o Is AD a candidate key for R?
A+ = A, D+ = DEC
A,D not keys, so Yes!

« Is ADE a candidate key for R?
No! AD is a key, so ADE is a superkey, but not a candidate key




Normal Forms

* Any table of data is in 1NF if it meets the definition of a relation

* Arelation is in 2NF if all its non-key attributes are dependent on
all of the key (no partial dependencies)

® If a relation has a single attribute key, it is automatically in 2NF

® A relation is in 3NF if it is in 2NF and has no
transitive dependencies

® A relation is in BCNF if every determinant is a candidate key

® A relation is in fourth normal form if it is in BCNF and has no
multi-value dependencies




