Lab sheet #1

-Identification of the common laboratory glassware, pipettes and Equipment--Objective:

• To be familiar with the most common biochemistry lab tools and equipment

-Method and Results:

A) Identification of the common laboratory glassware:

Write the type and final volume of glasswares that presented to you.

Glassware number	Type of glassware	Final volume (capacity)
1		
2		
3		
4		
5		

B) Identification of the common laboratory pipettes:

- 1. Examine the three pipettes placed on your laboratory bench.
- 2. Record their types and the volume of their smallest division.

	Type of pipette	Smallest division
А		
В		
С		

C) Comparing between glassware accuracy:

- 1. Place a beaker in the electronic balance, and record its weight.
- 2. Remove the beaker from the balance, and then add 5 ml of water using a graduated pipette (Mohr). Then record the weight.
- 3. Repeat the procedure by using a measuring cylinder this time.
- \rightarrow Alternatively, after placing the beaker press zero to remove the unwanted weight.

Type of glassware	Weight of beaker (g)	Weight of beaker + water (g)	Weight of water (g)	
Graduated pipette				
Measuring cylinder				
Which one is more accurate?				
* The weight of the water should be the same as its volume since the density of water equals one.				

D) pH meter:

- 1- The pH meter is already **Calibrated**
- 2- Wash the electrode with distilled water and dry by tissue then put it into sample solution A then wash it again and place it in solution B → Read pH.

Note: After use the electrode, you should storage it in distilled water and never be allowed to dry out. If the electrode get dry it will required reactivation.

Solution	pH value	Neutral, acidic or basic
Standard 4		
Standard 7		
Standard 10		
Solution A		
Solution B		

E) Spectrophotometer:

- 1- Adjust the spectrophotometer to zero using distal water as <u>blank</u> in the cuvette.
- 2- Read the absorbance of standard solution and the solution of unknown concentration at **280 nm.**
- 3- Record your result.

Solution	Absorbance at 280nm
BSA standard solution (0.5 g/100 ml)	
Solution of Unknown concentration	

Calculation:

$C_{\text{standard}} \rightarrow A_{\text{standard}}$	 C unknown =	C standard x A unknown
$C_{unknown} \rightarrow A_{unknown}$		A standard

Where, $C_{standard}$ = concentration of standard solution, $C_{unknown}$ = concentration of unknown solution, $A_{standard}$ = Absorbance of standard solution, $A_{unknown}$ = Absorbance of unknown solution.