Lab sheet \#7
 -Titration of a weak acid with a strong base-

Objectives:

- To study titration curves.
- Determine the pKa value of a weak acid.
- Calculate the pH value at a given point.
- Reinforce the understanding of buffers.

Method:

You are provided with $\mathbf{0 . 1} \mathrm{M} \mathrm{CH}_{\mathbf{3}} \mathbf{C O O H}$ (weak acid solution) and $\mathbf{0 . 1} \mathbf{M ~ N a O H}$ (strong base solution):

1. Fill up the Burette with $\mathbf{0 . 1} \mathbf{M} \mathbf{N a O H}$ solution using the funnel.
2. To a beaker, add 10 ml of $\mathbf{0 . 1} \mathbf{M} \mathbf{C H}_{\mathbf{3}} \mathbf{C O O H}$ solution and measure its pH value.
3. Start the titration: slowly add 0.5 ml of $\mathbf{0 . 1} \mathbf{M} \mathbf{~ N a O H}$ (drop-wise) to the weak acid solution and mix, then record the pH value.
4. Keep on titration (step 3) until the pH reaches 9.

Results:

$\mathbf{m l}$ of 0.1M NaOH	$\mathbf{p H}$	$\mathbf{m l} \mathbf{~ o f ~ 0 . 1 M ~ N a O H ~}$	$\mathbf{p H}$
0		8.5	
0.5		9	
1		9.5	
1.5		10	
2		10.5	
2.5		11	
3		11.5	
3.5		12	
4		12.5	
4.5		13	
5		14.5	
5.5		14.5	
6		15	
6.5		15.5	
7		16.5	
7.5			
8			

1. Record the pH values in the titration Table
2. Plot the titration curve (pH versus ml of 0.1 M NaOH added.
3. The calculations
a. Calculate the pH of the weak acid HA solution at 0 ml of NaOH and_after the addition of $3 \mathrm{ml}, 5 \mathrm{ml}$, and 10 ml of 0.1 M NaOH . (using the theoretical $\mathrm{Pka}=4.76$)
b. Determine pH value from the curve (measured)
(In the discussion: compare between pH values from $\mathrm{a} \& \mathrm{~b}$)

$0.1 \mathrm{M} \mathrm{NaOH}(\mathrm{ml})$	Calculated $\mathbf{p H}$	$\mathbf{p H}$ from titration curve
$\mathbf{0}$		
3		
$\mathbf{5}$		
$\mathbf{1 0}$		

c. Determine the pKa value of weak acid from the curve
(In the discussion: compare the calculated Pka value with the theoretical one)

In the Discussion

At what pH -range did the acid show the best buffering behavior?
What are the chemical species at that region, what are their proportions?

