Lab sheet #8

-Titration curve of amino acids -

Objectives:

- To study titration curves of amino acid.
- To use this curve to estimate the pKa values of the ionizable groups of the amino acid.
- To determine pI.
- To determine the buffering region.
- To understand the acid base behaviour of an amino acid.

Method:

A) You are provided with **0.1M alanine** (amino acid solution) and **0.1M NaOH** (strong base solution):

- 1. Fill up the Burette with **0.1M NaOH** solution using the funnel.
- 2. To a beaker, add 10 ml of **0.1M alanine** solution and measure its pH value.
- 3. Start the titration: slowly add 0.5ml of **0.1M NaOH** (drop-wise) to the alanine solution and <u>mix</u>, then record the pH value.
- 4. Keep on titration (step 3) until the <u>pH reaches 11.</u>
- **B**) You are provided with **0.1M alanine** (amino acid solution) and **0.1M HCl** (strong acid solution):
 - 1. Fill up the Burette with **0.1M HCl** solution using the funnel.
 - 2. To a beaker, add 10 ml of **0.1M alanine** solution and measure its pH value.
 - 3. Start the titration: slowly add 0.5ml of **0.1M HCl** (drop-wise) to the alanine solution and <u>mix</u>, then record the pH value.
 - 4. Keep on titration (step 3) until the <u>pH reaches 2.17.</u>

Results:

Table (A):

ml of 0.1M NaOH	pН	ml of 0.1M HCl	pH
0		0	
0.5		0.5	
1		1	
1.5		1.5	
2		2	
2.5		2.5	
3		3	
3.5		3.5	
4		4	
4.5		4.5	
5		5	
5.5		5.5	
6		6	
6.5		6.5	

7	7	
7.5	7.5	
8	8	
8.5	8.5	
9	9	
9.5	9.5	
10	10	
10.5	10.5	
11	11	
11.5	11.5	
12	12	

- 1. Record the pH values in the titration Table A
- **2.** Plot the titration curve (pH versus ml of 0.1M titrant added).
- 3. The calculations
 - a. <u>Calculate</u> the pH of the alanine solution after the addition of 0 ml, 5 ml of 0.1M NaOH, and after the addition of 0.5 ml, 2 ml of HCl. (using the theoretical pKa1= 2.34 and pKa2= 9.69)
 - b. <u>Determine</u> pH value from the curve, and record it in Table B
 - c. <u>Determine</u> the pKa1, pKa2, and pI values of alanine from the curve, and record it in Table C

Table (B):

ml of titrant added	Calculated pH	pH from titration curve
0 ml of 0.1M NaOH		
5 ml of 0.1M NaOH		
0.5 ml of 0.1M HCl		
2 ml of 0.1M HCl		

Table (C):

Theoretical values		values from titration curve
Pka1		
Pka2		
pI		

In the Discussion

- Discuss how alanine behaves toward the addition of acid and base.
- Discuss the titration curve of alanine, and determine/ discuss the buffering region.
- Compare between pH values (table B)
- Compare the theoretical values with the values from the titration curve (table C)