Lab sheet #9 Beer's Lambert Law and Standard Curves

Objectives:

- To understand the concept of Beer-Lambert law and its applications.
- Getting familiar with the standard curve.
- Determination of an unknown concentration for a solution.

Method:

You are provided with:

- Standard solution of **0.1 M Copper Sulfate** (Stock solution).
- Solutions "A" and "B" with Unknown concentrations

1. Set up 8 test tubes, as following table:

Tube	0.1M Copper Sulfate Standard Solution (ml)	H ₂ O (ml)	Solutions with unknown concentration (ml)
Blank	-	5 ml	-
Α	1ml	4 ml	-
В	2 ml	3 ml	-
С	3 ml	2 ml	_
D	4 ml	1 ml	_
Ε	5 ml		-
Solution "A"	-	-	2 ml
Solution "B"	-	-	2 ml

2. Cover the tube and mix the contents using the vortex.

3. Measure the absorbance of each tube at 600 nm against the blank.

Results:

Tube	Absorbance at 600nm	Concentration (M)
Α		
В		
С		
D		
Ε		
Solution "A"		From the curve=
Solution "B"		From the curve=

- 1. Calculate the concentrations of standard solutions (Tube A-E).
- 2. Plot the standard curve (Absorbance vs. Concentration).
- 3. Determine the concentration of unknown solutions "A" and "B" from the standard curve.
- 4. Calculate the concentration of Solution "A" and "B", from the law using (0.942 M⁻¹cm⁻¹).
- 5. Calculate the extinction coefficient of your Copper Sulfate solution (using one of the known tubes).

In the Discussion

- Discuss the shape of the standard curve you obtained.
- Discuss the relationship between absorbance, colour, and concentration.
- Compare the calculated concentration values (A and B) with those obtained from the standard curve. (explain which one is more accurate and why)
- Compare the calculated extinction coefficient of Copper Sulfate with the known value (0.942 M⁻¹cm⁻¹).