INBORN ERRORS OF METABOLISM (BCH545)

Dr.Saba Abdi

Associate Prof. Dept. Of Biochemistry College Of Science, KSU, Riyadh

COURSE GENERAL DESCRIPTION

Disorders of :

✤ carbohydrate metabolism (pentosuria, diseases of

fructose metabolism and glycogen storage diseases)

- amino acid metabolism (urea cycle disorders)
- lipid and steroid metabolism (lipoprotein deficiency and hyper-lipoproteinaemia, familial diseases of sterol metabolism)
- ✤ purine, pyrimidine, metals and porphyrin metabolism

STUDENTS ASSESSMENT ACTIVITIES

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Continuous Assessment Exam I	6	20
2.	Continuous Assessment Exam II	10	20
3.	Two oral presentations	14	20
4.	Final Exam	16	40

REFERENCES AND LEARNING RESOURCES

Essential References	Inborn Metabolic Diseases (By J Fernandes, Saudubray and Van den Berghe), Latest edition
Supportive References	Functional Biochemistry in Health and Disease (2009) (by Newsholme & Leech)
Electronic Materials	Metabolic Regulation (2020) (by Frayn)
Other Learning Materials	Thompson MW, McInnes RR, Willard, HF. Genetics in Medicine. W.B. Saunders Company, London. Latest edition

- The British physician, Archibald Garrod (1857-1936) coined the term inborn errors of metabolism in 1902
- He discovered the 1st metabolic disorder "Alkaptonuria"

66

Inborn Errors Of Metabolism

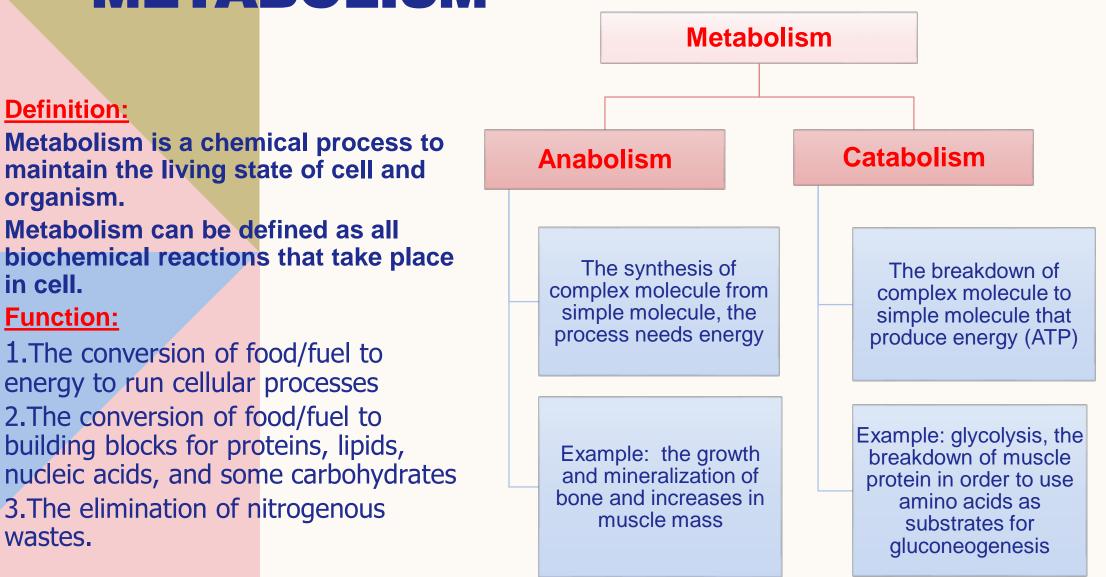
These are genetic disorders that hamper the body's metabolism resulting in severe clinical manifestations

Examples: phenylketonuria, albinism, lactose intolerance, gaucher disease, fabry disease

inherited congenital disorders: birth defects in newborn infants which passed down from family and affecting metabolism.

INTRODUCTION

Inborn errors of metabolism (IEM) are a group of inherited congenital disorders leading to enzymatic defects in the human metabolism in which the body cannot properly break down the nutrients from food.

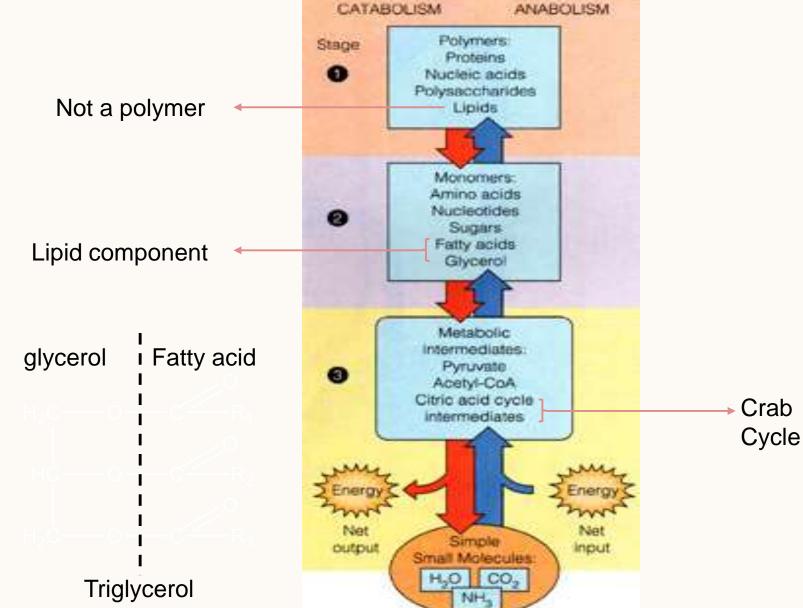

This results in the accumulation of food substrates in the cells of the body, leading to clinically significant consequences.

If inborn errors of metabolism are not clinically managed, they can lead to developmental delays and other severe health conditions.

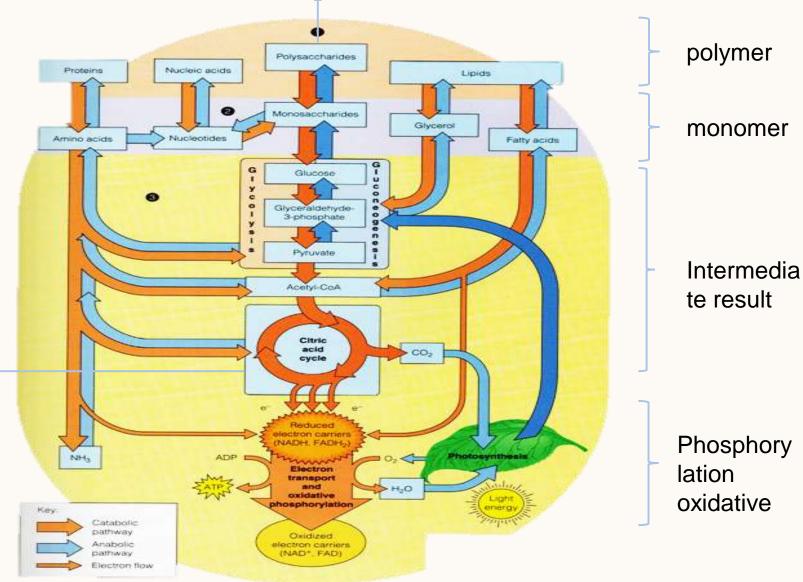
RECALL

- What is metabolism and its basic functions?
- What are the metabolic pathways?
- Differentiate between anabolism and catabolism?
- How are anabolism and catabolism interlinked ?

METABOLISM



ANABOLISM AND CATABOLISM


Anabolism and catabolism occur in 3 stage.

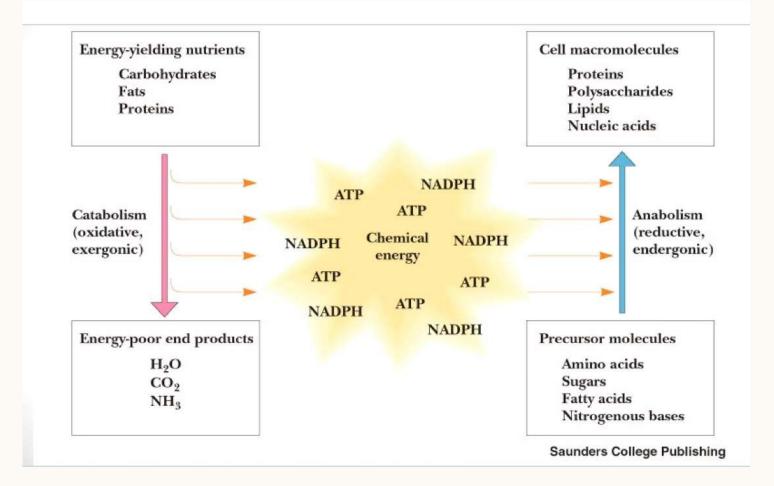
•Stage 1: The conversion of macromolecule (polymer and complex lipid) to monomer intermediates.

Stage 2: The conversion of monomers (amino acids, nucleotides, sugars, fatty acids, and glycerol) to metabolic intermedites (Pyruvate, Acetyl-CoA, and Citric acid cycle intermediates).
Stage 3: Degradation of metabolic intermediates to H₂O, O₂, and NH₃.

METABOLISM

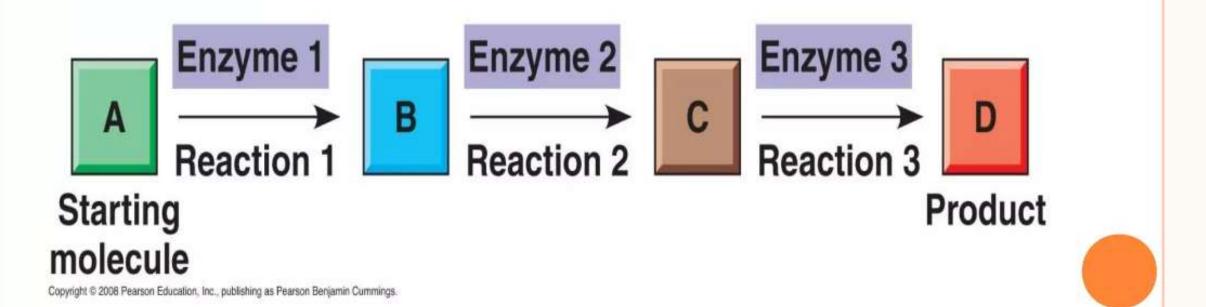
An energy source (act mostly in crab cycle)

• The whole process of metabolism is really a continuum

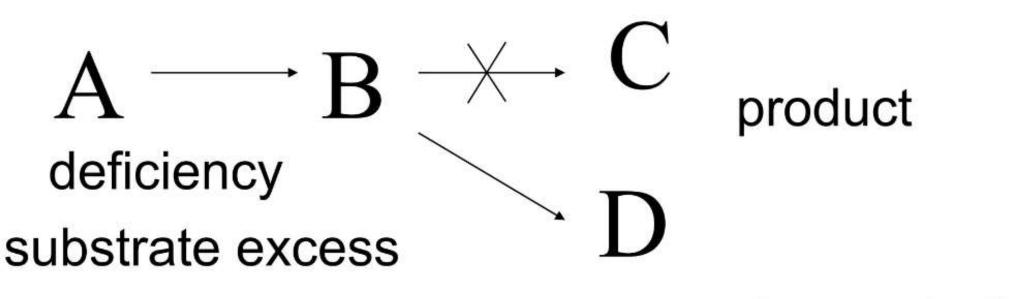

 There are electron transport in every process of metabolism

Produce high energy

Amphibolic pathways:


Metabolic pathways that occur at crossroad of metabolism and act as a link between anabolism and catabolism (eg. The citric acid cycle)

CATABOLISM AND ANABOLISM ARE RELATED


A metabolic pathway begins with a specific molecule and ends with a product.

Each step is catalyzed by a specific enzyme

What is a metabolic disease?

Garrod's hypothesis

toxic metabolite

IEM can appear at birth or later in life

In IEM, body's metabolism is affected due to genetic disorders.

The cause of IEM is mutations in a gene that code for an enzyme leading to

synthesis of defective enzyme activity or deficiency of an enzyme that affects

the normal function of a metabolic pathway.

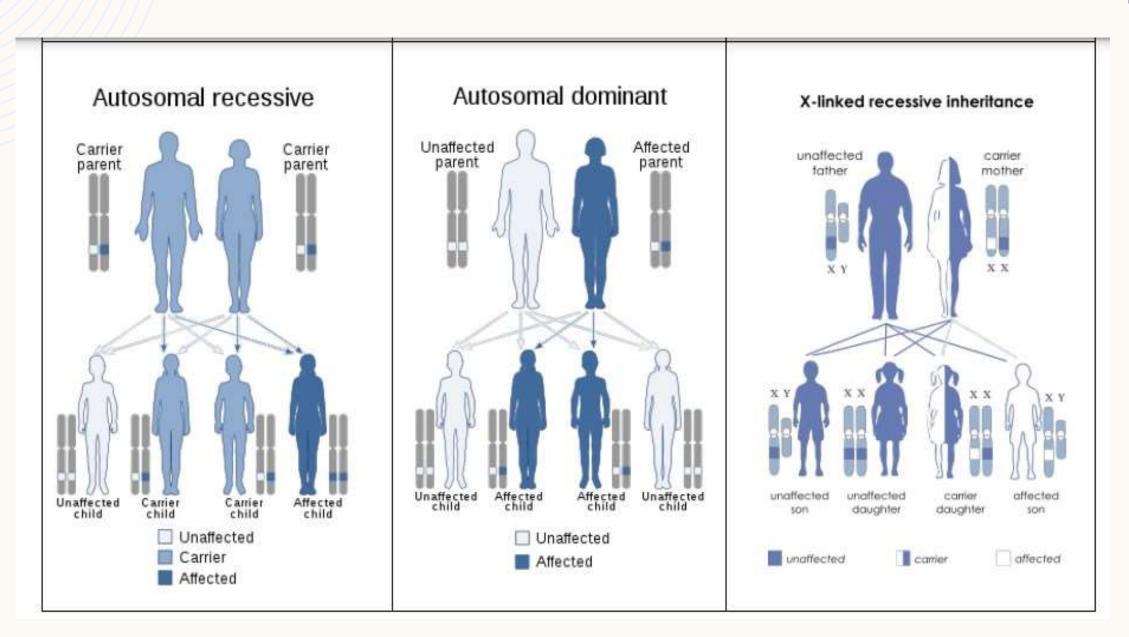
The main indication of IEM is an excess storage or accumulation of specific metabolites in tissues, organs and blood which further manifest to health diseases.

Several hundreds of different IEM have been identified.

Most IEM are rare but some are life threatening.

ETIOLOGY

Inborn errors of metabolism are inherited disorders caused by mutations in genes coding for proteins (enzymes, receptors, specific protein , transport proteins, membrane pumps, structural elements) that function in metabolism.


Most are inherited as autosomal recessive.

Rarely, they are autosomal dominant and X-linked.

Environmental, epigenetic, and microbiome factors and additional genes are potential modifying etiologic factors in those with inborn errors of metabolism

* Types of Inheritance:

Autosomal Recessive	Autosomal Dominant	X-linked
25% of offspring of unaffected	1 4	Normal father, carrier mother >
carrier parents	parent	affected male child
Congenital Adrenal	* Achondroplasia	* Color-blindness
Hyperplasia Most	Ehlers-Danlos Syndrome	MD (Duchenne Muscular)
important problem is	✤ Familial	Dystrophy) & Becker
ambiguous genitalia.	Hypercholesterolemia	Fragile X Syndrome
* Cystic Fibrosis	Huntington's Disease	* G6PD urine cola color, low
* Friedreich's Ataxia	* Marfan Syndrome	hemoglobin, and jaundice
* Galactosemia	* Myotonic Dystrophy	when eating beans
* Glycogen Storage Disease	* Neurofibromatosis	* Hemophilia A & B
Hurler Syndrome	Noonan's Syndrome	Hunter's Syndrome
(Mucopolysacchridosis I)	Steogenesis Imperfecta	(Mucopolysacchridosis II)
* Oculocutaneous Albinism	* Tuberous Sclerosis	
* Phenylketonuria		
* Sickle Cell Disease		
* Tay-Sach's Disease		
* Thalassemia		
Werdnig Hoffmann		
disease		

What is a metabolic disease?

- Small molecule disease
 - Carbohydrate
 - Protein
 - Lipid
 - Nucleic Acids

- Organelle disease
 - Lysosomes
 - Mitochondria
 - Peroxisomes
 - Cytoplasm

EXAMPLES OF IEM GROUPS

Amino acid metabolism:

phenylketonuria (PKU) maple Syrup Urine Disease (MSUD) homocystinuria

Urea cycle arginino succinnic aciduria disorders OTC deficiency

Organic Acidaemias

propionic acidaemia methyl malonic aciduria isovaleric acidaemia

Fat Oxidation Defects:

MCAD deficiency

Carbohydrate Metabolism:glycogen storage disorders
galactosaemiaLysosomal storage disorders:gaucher and Fabry diseases
mucopolysaccharidosesTransport protein defects:cystic Fibrosis
cystinuria
cystinosisMitochondrial disorders:Pearson syndrome
cytochrome oxidase def

Three Types

- Type 1: Silent Disorders
- Type 2: Acute Metabolic Crises
- Type 3: Neurological Deterioration

Type 1: Silent Disorders

- Do not manifest life-threatening crises
- Untreated could lead to brain damage and developmental disabilities
- Example: PKU (Phenylketonuria)

Type 2: Acute Metabolic Crisis

- Life threatening in infancy
- Children are protected in utero by maternal circulation which provide missing product or remove toxic substance
- Example OTC (Urea Cycle Disorders)

Type 3: Progressive Neurological Deterioration

• Examples: Tay Sachs disease

Gaucher disease

Metachromatic leukodystrophy

DNA analysis show: mutations

Treatment

- Dietary Restriction
- Supplement deficient product
- Stimulate alternate pathway
- Supply vitamin co-factor
- Organ transplantation
- Enzyme replacement therapy
- Gene Therapy