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Introduction

This book provides an introduction to ordinary differential equations and sys-
tems of differential equations for beginning graduate students. We introduce
some basic methods for solving differential equations and study some of the
most important of them. As a prerequisite, it is essential the reader has basic
knowledge of differential and integral calculus and linear algebra.
This manual is intended primarily for undergraduate students in mathematics,
science or engineering, who generally take a course on differential equations.
Note that, differential equations are primarily used to study physical processes
and to model them. These differential equations come from physical models.
A differential equation is a relation involving an unknown function, some of

. o . . d _
its derivatives and known quantities and functions. For example, d—y =y+e "
-

Ordinary differential equations are differential equations whose unknowns are
functions of a single variable.

Many physical laws are formulated as differential equations. (The gravity law,
the Kepler law,..). For example Newton’s second law of motion tells us that the

force on an object is equal to the product of its mass, m and its acceleration
dv

Solving the differential equation means finding y in terms of . This is not
usually possible, moreover in general under some assumptions, we have local
solutions.

The object of this course is the qualitative study of a differential equa-
tions: existence and uniqueness of the solutions, the study of their domain of
definition, how to solve differential equations explicitly.
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First-Order Differential

Equations

Definitions and Basic Concepts

Definition 0.1.

1.

3.

An ordinary differential equation (ODE) is an equation that contains one
or more derivatives of the unknown function. A function that satisfies
this equation is called a solution of the differential equation. The most
general form of an ordinary differential equation is:

F($>y(x)’y(1)($)7'">y(n)(x)) =0, (1'1)

where F: Q — R, where € is an open subset of R" 12,

. The highest derivative that appears in the ordinary differential equation

is called the order of that ordinary differential equation.

(a) If the ordinary differential equation (1.1) is in the form

ao(@)y™ (@) + ...+ ap_1(@)y V(@) + an(2)y(z) = f(z)  (12)

the differential equation is called linear. If such representation is not
possible, the differential equation is called nonlinear.

(b) If f = 0 in (1.2), the equation is called an homogeneous linear
ordinary differential equation.

(¢) If the functions ag,aq,...,a, are constants, the equation (1.2) is
called a linear ordinary differential equation with constant coeffi-
cients.

11
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(d) Similarly, if the functions ag, ai, ..., a, are constants and f = 0, the
equation (1.2) is called a linear homogeneous ordinary differential
equation with constant coefficients.

Definition 0.2.

A function ¢ defined on an interval I is called a solution of the differential
equation (1.1) provided that the n derivatives of the function exist on the
interval I and

F(z,p(x), oW (2),...,¢"(z)) =0, Vzel.

There is a classification of solutions of an ordinary differential equation:

1. Exact solution, i.e. we obtain a solution in a closed form.

2. A relation f(z,y) = 0 is said to be an implicit solution of the differential
equation (1.1) on an interval I, if the relation defines implicitly a function
y = @(x) which satisfies the differential equation (1.1) on an interval I.

3. We prove under some conditions on the function F' the existence, the
uniqueness and some others properties of the solution of initial conditions
without finding this solution.

4. Using computer techniques and under some conditions, we can give some
approximation of the solution of the differential equation.

Remark 1 :

1. An ordinary differential equation may sometimes have solution that can
not be obtained from the general solution. Such a solution is called
singular solution.

For example, the differential equation 3’ 2 2y’ + y = 0 has the general
solution y = cx — ¢® but also has a solution y, = iazg that cannot be
obtained from the general solution by choosing specific values of c.

2. In general, there is no simple formula or procedure to find solutions of
differential equations.

Example 0.1 :
1. y = e~ % is a solution of the ordinary differential equation ¢y’ = —y.
2. is a solution of the ordinary differential equation (1—xz)y' —y =

o«
I
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—2x

3. The function y = e is a solution of the ordinary differential equation

y +5y —6y=0.
4. y = cos(3z) is a solution of the ordinary differential equation y// +9y = 0.

5. The relation 22y + In |y| — 1 = 0 defines an implicit solution of the differ-
ential equation (2zy + 1)y’ + 2y? +y = 0.

6. Consider the differential equation y’ = . This equation is equivalent

1
to (y + ) dy = xdzx.
Y

After integration we get 4% +21In |y| = 2% +¢. This is an implicit solution.

1y
y? +1

7. Consider the following differential equation: y’ = ByQﬁ, y(0) = 1. After
integration we get y3 4+ y = x + 2. This is an implicit solution.

8. Consider the following differential equation: 3’ = sm((z)).
cos(y
After integration we get sin(y) = — cos(x)+c. This is an implicit solution.

1 First-Order Differential Equations

1.1 Introduction

Definition 1.1.

Let f: © — R be a continuous function on an open subset Q of R2. The
following equation is called the reduced form of a first order ordinary differential
equation:

v =[fy), (vy)eQ (1.3)

Remark 2 :
If f is a continuous function of one variable x, the equation becomes

The solution is a primitive of the function f,

y(z) = /f(x) dz + c.
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1.2 The Cauchy Problem

Definition 1.2.

Let (zo,y0) € Q, the Cauchy problem of the differential equation (1.3) at
(z0,¥0) is to find a solution y: I — R such that z( is an interior point of I
and y(zo) = yo-

The point (z,yo) is called the initial condition of the Cauchy problem.

Remark 3 :

1. An explicit solution of the Cauchy problem is a solution of the form
y = g(x), where g: I — R is a differentiable function and fulfills:

(a) Ve el, (xz,g(x)) € Q,
(b) Vrzel, yl(x) = f(a?,g(x))

2. An implicit solution of the Cauchy problem is a solution of the form
G(z,y) = 0, such that

y/ - F(l'vy) _
{y(%) = Yo > G(z,y) =0.

Remark 4 :

1. For any point M = (zg,yo) € 2, consider the straight line Dy; passing
through M and of slope f(zo,yo). The equation of Dy is

Yy —yo = [(x0,y0)(x — 0).

The straight line D) is tangent to the solution (if it exists) of the Cauchy
problem at (xg,yo) of the differential equation (1.3) .

The map M —— D), is called the vector field of the tangents associated
to the equation (1.3).

For example, the function e** is the solution of the Cauchy problem at
(0,1) of the differential equation 3’ = ay. If M = (0, 1), the equation of
the straight line Dy is y = 1 + ax.

2. Consider the differential equation (1.3) on the open subset QT ={(z,y) :
f(x,y) >0}, any solution of the differential equation (1.3) is increasing
since y' = f(z,y) > 0 and on the open set Q™ ={(x,y) : f(z,y) <0}, any
solution of the differential equation (1.3) is decreasing.
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For example, consider the differen-
tial equation ¢y’ = z — v.
Ot = {(z,y) € R? y < z} and

V&3

Q" = {(z,y) € R* y > z}. The /
solutions of this differential equa-
tion are y = (x — 1) +ce™*, c€ R.

Consider also the differential equation

Y =flz,y)=z—y°

OF ={(z,y) € R?; y?> <z} and Q™ = {(z,y) € R?; y? > z}.
Yy

T

1.3 Maximal Solutions

Definition 1.3.

Let y1: I — R and y2: J — R be two solutions of the differential equation
y' = f(z,y). The function ys is called an extension of y; if I C J and Yar, = V1.
Definition 1.4.

A solution y: I — R of the differential equation is called maximal if y can not
have an extension y;: J — R, with J D I.
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Theorem 1.5.
Any solution y of the differential equation y’ = f(x,y) may be extended to a
maximal solution (not necessarily unique).

1.4 Global Solutions

If Q=1xJ, I and J are open intervals of R.

Definition 1.6.
A global solution of (1.3) is a solution defined on the interval I.

Any global solution is maximal but the inverse is false.
Yy

Example 1.1 :
Consider the differential equation: ¥’ =y on R x R.

y = 0 is a global solution.
/
-1
If y is zero free, the differential equation is equivalent to y—2 =1, then ﬁ =
Y ylx

x4+ cand y(z) = e
r+ec
This solution is defined on | — oo, —c[U] —¢, +00[. It is maximal but non global.

1.5 Regularity of Solutions

Recall that a function of several variables f is called of class C* if the partial
derivatives of f of order less or equal to k are continuous.

Theorem 1.7.
If f: Q CR xR — Ris of class C¥, any solution of the differential equation
y' = f(x,y) is of class CF*+1.

Proof .

If £ =0, f is continuous. By assumption a solution g: I — R is differentiable
and ¢’ = f(z,g(x)) is continuous, thus g is of class C!.

Assume that if f is of class C*~!, any solution of the differential equation
y' = f(x,vy) is of class C*.
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If f is of class C* and g a solution of the differential equation y’ = f(x, ).
Since ¢’ = f(x,g(z)), g is at least of class C¥. Also as f is of class C*, then ¢’
is of class C* and then g is of class CF*1.

g

1.6 Local Existence Theorem

Theorem 1.8. [Local Existence Theorem (The Picard’s Theorem)|

If the function f: Q@ — R is continuously differentiable with respect to the
variable y and continuous on 2, then for any (z¢, yo) € §2 there exists a unique
solution of the initial value problem y’ = f(x,y) and y(xo) = yo for x in some
open interval containing xg.

Example 1.2 :
Consider on R the following differential equation

y'(t) =yl

y = 0 is a solution of the differential equation on R.
If y > 0, there is a constant ¢ € R such that 2,/y = x + ¢. This solution is
T+ 0)2

If y < 0, there is a constant ¢ € R such that —2,/—y = x + ¢. This solution is
T+ 0)2

j2? forz >0 j2?  forz >0

. _ _Jg2? forz>0, - [ gz or x>0,

The functions y; = 0, yg(x)—{ 0 fora:SO,’yS(x)_{—}le for z < 0.’
0 for x > 0,

valx) = —ixz for z <0,
initial value problem y(0) = 0. In spite of the fact that the theorem conditions

are not necessary, this gives an example where the theorem conditions are not
satisfied and we do not have the uniqueness of the solution.

defined only for z > —c and in this case y = (

defined only for < —c and in this case y = —(

are solutions of the differential equation with the

1.7 Exercises
Give an example of an initial value problem with multiple solutions.

Give an example of an initial value problem which has no solution.

Characterize the continuous functions f on R such that / fdt+1=
0
f ().

Discuss the uniqueness of solutions of the following differential equation
on the interval [0, 4+o00[

y'(t) = =3y2(x), y(0)=1.
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2 Exact Differential Equations and Integrating
Factor

In general, there is no simple formula or procedure to find solutions of differ-
ential equations.

2.1 Exact Differential Equations

By a domain in R?, we mean a connected open subset.

Definition 2.1.
The differential equation

M(z,y)y + N(z,y) =0 (1.4)

is said to be exact on a domain ) if there is a function F'(z,y) defined on 2
such that

OF oF
—_— = N —_— = .
o (z,y), 9 M(z,y)

In this case, if M, N are continuously differentiable on €2, we get

oM AN

E —_— aiy. (1.5)

Remark 5 :

1. If the domain €2 is a rectangle, the condition (1.5) is also sufficient for the
exactness of the differential equation on .
2. If the differential equation is exact, we get
oF OF d

e + 9y y = %F(m,y(x)) = 0. It follows
that F(z,y(z)) = ¢, with ¢ € R.
This is an implicit form of the solution y.

Example 2.1 :
Consider the differential equation 2z%yy’ + 2xy? +1 = 0.
M =222y, N = 2zy? +1 and Q = R2. The differential equation is exact on .

ON 4 oM
S ppy = =
By Y= oz
To find F' we have: OF OF
— =2xy*+1, — =227
Ox +h Oy vy
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If we integrate the first differential equation with respect to z holding y fixed,
we get
F(z,y) = 2*y" +z + f(y).

Differentiating this equation with respect to y, we have

OF
—— =22 "(y) = 222
o9 7y + f'(y) =227y

using the second equation. Hence f'(y) = 0 and f(y) is a constant function.
The solutions of the differential equation in implicit form is z2y% + = = c.

Example 2.2 :

Tz —
Consider the differential equation 3y’ = Y This differential equation can

Tty
be written in the form y — x + (z + y)y’ = 0 which is an exact differential
equation. In this case, the solution in implicit form is z(y — z) + y(z + y) = ¢,
ie., y? +2xy — 2% =c.

2.2 Integration Factor Method

If the differential equation My’ 4+ N = 0 is not exact it can sometimes be made
exact by multiplying it by a continuously differentiable function g(z,y). Such

a function is called an integrating factor.
d(gM) _ O(gN)

If g is an integrating factor, then . ay and it can be written in
the form oM ON 5 5
g 9
— - —Jg=—-M—_—=+N—.
( ox Oy ) g Ox * Oy

1. If g is a function of x only, then

1 /ON OM
i (ay - m;) = 4l@)

is a function only of z and ¢’ = Ag.

2. If g is a function of y only, then

1 /(oM ON
v (5 )=

is a function only of y and ¢’ = Bg.
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Example 2.3 :
(2%y — x)y’ + 20?2 + y = 0. In this case

Ox y

1 (OM 9N\ 2wy—2 2
a2y —2x oz

So g = —; is an integrating factor and the general solution of the differential
x

1
equation is 2z — ¥ + §y2 =cor2z®—y+ %ny —
T

Example 2.4 :
Consider the differential equation: y 4+ (22 — ye¥)y’ = 0. In this case

1 oM ONY\ 1
oy or ) vy
so there is an integrating factor which is a function of y only and satisfies
g = %g. Hence y is an integrating factor and y? + (2zy — y%e¥)y’ = 0 is an
exact differential equation with general solution zy? — (y2 —2y+2)e?¥ =c.

Remark 6 :

The solutions of the exact differential equation obtained by multiplying by the
integrating factor may have solutions which are not solutions of the original
differential equation. This is due to the fact that g may be zero and we will
have the possibly to exclude those solutions where g vanishes. However, this is
not the case for the above examples.

2.3 Exercises

Solve the following differential equations

1) (2* +3y*)y + 22y =0
2 2y+xey)y +eY=0

) (a?
) (
3) 2yva2—y2)y — (1+2zv/22 —y?)=0
) (
)(

=~

63@2 —y+3)y + (12zy — sinx) = 0.
1
5 Y+ (5 ——=)=0
)+ y2)
6) (y +2)y +22+y=0
7) (32%y +v*)y + (2% + 32y?) =0

Test the following differential equations for exactness, and find the general
solution for those which are exact.
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(23 + )y + 322y = 0,
(y? —2?)y' + (2* —y*) = 0,

Find an integrating factor and solve the following differential equations:

2
1) Ly 42w =0,
Y

2) (y*+32)y —y=0

3) xy —y = a?sinz,

1) [2(sin(x) + sin(y)) + y cos(y)]y’ + ycos(x) = 0.

3 Separable Differential Equations

Definition 3.1.

The first order ordinary differential equation y' = f(x,y) is said to be separable
if f(x,y) can be expressed as a product of a function of x and a function of y.
The differential equation has the form

Y = g(x)h(y). (1.6)

This differential equation can be rewritten as

A(x)dx + B(y)dy = 0. (1.7)

3.1 Autonomous Differential Equations y’' = f(x)

where f: I — R is a continuous function.
The solutions of this differential equation are given by: y(z) = F(x)+ ¢, where
¢ € R and F' any primitive of f.
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3.2 Logistic Differential Equations vy’ = g(y)

where g: I — R is a continuous function.

Denote (y;)jem the roots of the equation g(y) = 0 in the interval J. The
functions y(z) = y; are singular solutions of the differential equation y’ = g(y).
On the open set = {(z,y) € R x J; g(y) # 0}, the differential equation
y' = g(y) is equivalent to the following differential equation % = dz.

The solutions of this differential equation are given by G(y) = x + ¢, where
¢ € R and G any primitive of the function — on each of the open intervals
g
195 Yl
As G’ = = and g is positive or negative on the interval ]y;, y;11[, the func-

tion G is monotone and bijective G: |y;, yj+1[—>]a;, b;[, with a; € [—o0, +00[
and b; €] — 00, +00]. Thus the solution is given by y = G~!(z +¢), with ¢ € R.
Assume now that g > 0, G is increasing on the interval Jy;, y;4+1].
yjte
e If the integral / is divergent, a; = —oo since z = G(y) —¢ —
v, 9 y—y
—o0. In this case the curve is asymptotic to the straight line of equation y = y;.

yjte
e If the integral / —

converges, a; € Rand . — a; —cand y =

v, 9 y—yt
9ly) — 0.
y—>yj

The solution passes trough the

point (a; — ¢,y;) and the line of

equation y = y; is tangent at this 9(y) <0

: Yy=1Y2
point.
: . 9(y) >0

In this case, when the integral con-

verges, there is no uniqueness of the

Cauchy problem.

The shape of the curve is as follows

(we assume that the integral con-

verges at yo—0 and diverges at y; 0 Y =1
Exercise 3.1 :

yite Yy
Prove that / —~2_ diverges if ¢ is of class C'.
v 9W)

Example 3.1 :

Consider a logistic differential equation

y' =y —y).
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y =0 and y = 1 are singular solutions of the differential equation.
For y # 0 and y # 1, the differential equation is equivalent to the follow-
ing: ﬁ = 1. Integrating both sides with respect to the variable x, we get

In 1 =x+cor 1 Y~ ae®. A € R can be determined by the initial
-y -y
i, Yo yoe”
condition y(0) = yg. A= ——). Theny = —————.
©=w-( 1—y0) (1 — o) + yoe”

e If 0 < yop < 1; A > 0. The solution y(z) € (0,1), for all z € R, hrf ylx) =1
T—r+00
and lim y(z)=0.
Tr—r—00

elfys>1;,A<0. lim y(x)=

r—+00

1
o If yo <0; A <O. EIEI y(z) = 0.

Example 3.2 :
Consider the following differential equation

v =]yl - y).

y =0 and y = 1 are singular solutions of this differential equation.
For y # 0 and y # 1, the differential equation is equivalent to the following
differential equation: L]

I —
Viwl(1—y)

e If 0 < yo = y(0) < 1. Integrating both sides with respect to the variable x,

1+
we get In \/5’ =z + ¢, then
1=y
[ Ae" =1 2
Y= e —1)
where A\ = Jr\/%>O lim y(z)=1
1—\/% T—r+00
.Ify0>1

A<0. lim y(z)=1

r—+o0

o If yg < O:
x = 2tan"(v/—yo) — 2tan"(v/—y),
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Y
\ g(y) <0
~—
y=1
ﬁ 9(y) >0
y =0 > T

g(y) <0

From this example, we see that the Cauchy problem has many solutions at
(.130, 0)

Example 3.3 :
Take the differential equation 3’ = zy.
d
y = 0 is a solution. For y # 0, the differential equation becomes d—y =xy. We
x? !
get In |y| = Y +e¢, or

where \ € R.

Example 3.4 :
It is clear that we might sometimes get stuck even if we can do the integration.
For example, take the separable differential equation

’ ry
y2+1

We separate variables,

y2+1

1
dyz(y—i—y) dy =z dz.

We integrate to get y* 4+ 21In |y| = 2 + c.
It is not easy to find the solution explicitly as it is hard to solve for y. We,
therefore, leave the solution in this form and call it an implicit solution.

Example 3.5 :
Consider the differential equation: y’ = 2231. Integrating both sides, we get

y3/3 = 2? — x + c. Hence,

Y= (3x2 — 3z + 3c> 1/3.
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Example 3.6 :
Consider the differential equation: y = %, (x> -1).
y = 1 is a singular solution. For y # 1, dividing both sides of the given
differential equation by y — 1, we get
y 1
y—1 x4+1°

Integrating both sides we get In|y — 1| =In(z + 1) +¢. Thus y =1+ A(z + 1),
AeR.

Example 3.7 :
Consider the differential equation: 2%y’ =1 — 2% + y? — 2%y, y(1) = 0, which
is equivalent to the following equation:

22y = (1 -2 (1 +y?).

Separate variables, integrate, and solve for y.

y/ _1_1‘2
1+y2 - x2
/
1
VA D
1+y2 $2
. 1
tan” " (y) =——z+C,
x

y =tan(=t—z+0C).

Now solve for the initial condition,
-1
y=tan| ——x+2|.
T

Find the general solution to y’ = 7?2 (including singular solutions).

First note that y = 0 is a solution (a singular solution). So assume that

Example 3.8 :

# 0 and write =3 T, = 5 m2+c = 3 0

W —_ f— N _—= — = = .
Y y? 4 Y 2 ’ 4 % +c¢ 22+ 2
Example 3.9 :

Consider the differential equation: 3y’ = £33,

To solve it using the above method we multiply both sides of the equation
by 32 to get
v’y = (z - 5).
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Integrating both sides we get %y?’ = %xz — 5z + c. Hence,
1

3

3
Y= [5:52 — 152z + ¢

Example 3.10 :

Consider the differential equation: y' = y;-|-3’ for z € (—3,400).
x
y =1 is a solution. For y # 1, we have
y 1
y—1 z+3

Integrating both sides we get

y' dx
dx= | ——
/y—lX /X—|—3+C1’
from which we get In|y — 1| = In(x + 3) + ¢;. Thus the general solution is
y=1+c(z+3), with c € R.

Example 3.11 :
Y COS T

Consider the differential tion: ¢ = .
onsiaer € dirrerential equation: y 1 +2y2

Transforming in the standard

form then integrating both sides we get

1+ 2y2
/wdy:/cosxdx—l-c,
Y

from which we get a family of the solutions:

In|y| 4+ y* =sinz + 1.

Example 3.12 :
Consider the differential equation

[1—9y2

The domain of definition of the differential equation is

Q={lz| <1, [yl <1} U{lz| > 1, [y] =1}
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1. On the open set Q; = {(z,y) € R?%; |z| < 1, |y| < 1} the equation is
equivalent to
dy ~  dz
V-2 V1-22

Then sin™'y = sin” 'z + A\, where A € R. As the function sin™': ] —
1

1,1[—] — &, 5[ is bijective, then X\ €] — 7, w[. Moreover sin™ "z €] —
T T A T {23 A HAZ0 Gty ez
2,2[0] 5 /\,2 )\[{]_g_ 1 if)\So,andsm yE|—5+
ANElifA>0andsin 'y €] — 2,2+ A[if A <0.

The integral curves admits the equation y = Sin(sin_1 x4+ A) =xzcos A+
V1 —22sin A, with z €] —1,cos A[, y €] —cos A\, 1[if A > 0, z €] —cos \, 1],
y €] — 1,cos A[ if A < 0. The equation (y — 2 cos A\)? + 2 sin® A = sin® A
is an ellipse.

2. The open set {|z| > 1, |y| > 1} has 4 connected components.

On the component {z > 1, y > 1}, the differential equation (1.8) is
equivalent to

dy _dx
V-1 Va?-1

Then cosh™' y = cosh™ 2 + A\, A € R. The function cosh™": ]1, 4-00[—
10, 400 is bijective, then

y = xwcosh A + v/x2 — 1sinh A,

with @ €]1,400[, y €] cosh A\, +oo[ if A > 0, z €] cosh A, +00[, y €]1, +0]
if A <0.

3.3 Exercises

Solve the following differential equations:

1) ' =2xy, 6) =y + (y* —2y) = 0,
2) Z// = xjy7 7) ;L'y’ = 1/1 = yg’
3) (1 =
) (1+a2y =1, iy

/ Y 8) = ,
4)y7x3_1) m+1

Y 14y

)y 23 —1’ ) 4+ 22’
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10) y'ztany = —1, 17) o = ysin(z), y(0) = 1,
2
= 1
11) ¢ =zy+az+y+1. 18) y/_x211’y(0):1’
12) a;y—y+2a:y, y(1) = 1. Y
/ — -y —
1 20) zy =e Y, for y(1) =1,
14) y' = 3241 y(0) =1, 21) o = sin(x)
15) ay’ =y?, y(1) = 1, ios(y)
[
16) y' = (y* — 1)z, y(0) = 2)y =
Consider the following differential equation
y' =1+cosy y(0)=a. (1.9)

1) Solve the differential equation (1.9) for a = 3.
2) Solve the differential equation (1.9) for a = 0.

Give an explicit solution (involving a definite integral) to the following
differential equations.

1) y/ 2lnx? y(2) = 07

2) ¥y =2e”, y(1) =1,

3) y' =xy+ax, y(2)=0,

4) y' =sinxcos’y, y(0)=0.

Solve the following differential equations:

syt 0y =

1)y ==,
2) ¢y =sinzcos(2y), y(0)=0
3) ?y + (y* —2y) =0
4) zy' = /1-y?
2
y—1
5) 3y =
) <x+1>
Vi+y
6) vy =
)Y =5
)y =1+
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) zyy' =1,
)y =y,
) y/ =1~ y27
12) 22y +y=0.
) (1+2z)y" +(2—-y) =0,
) z(tany)y = —1,
)

y 1
y/:7+77

4 Homogeneous Differential Equations

Definition 4.1.
A differential equation of first order is called homogeneous if it is has the form

v =), (1.10)

where g: J — R be a continuous function.

A solution g of the equation (1.10) defined on an interval I must fulfills:
L0gl, ey Vel

2. ¢'(z) = f(£2), Vz e I.

x

If we set 2 = £ or y = 2, we have: y' = z+ 22’ = f(2). Thus 2z fulfills the
following separated differential equation 2’ = M
x

Let {z;} be the set of roots of the equation f(z) = z. We have z = z; and
y(z) = z;jz (line passing through 0) are solutions.
On the open set {z; f(z) # z} the equation is equivalent to the following:

d d
ﬁ = —x, which is equivalent to: F(z) = In|z| + ¢ = In|Az|, A € R
z)— % x

and F' a primitive of the function on |zj,zj41[. We deduce that

1
f(z) ==
z = F~1(In A\x) where the family of integral curves C: y = 2F~1(In Az) defines
in the sector z; < £ < zj11, Az > 0.

Example 4.1 :
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2

Consider the differential equation: xy'(2y —x) = y% or iy = AT #£0
z(2y — x)
(2
and Yy # % ThU.S y/ = 27y$7_1.
x
1—
We set z = £, then y = 2’ + 2z = Q;il and z2’ = %
z=0,z=1, y=0, y=x are singular solutions.
2z —1 1
For z # 0 and z # 1, the equation is equivalent to: Y
z2(1—2) x

A
Then In|z(1—2)|=—In|z|+¢, 2(1—2) == and y(z —y) = Az or (y—N)(z —
x
y—A) =X Ifweset X =0 —y—Xand Y =y — A, we have
XY =\

This is the equation of an hyperbola with asymptotes y = A\, y = = — A
(corresponding to the asymptotic directions y = 0, y = « the line of singular

integrals).

Other Method of Resolution

We set {I - TC.OSQ, with » > 0 and 6 € R.
y=rsinf

dy tan Odr + rdf
Th tion b - =
e equation becomes p———

f(£) is equivalent to tan 0dr + rdf = f(tan0)(dr — rtan 0df) or

The differential equation 3y’ =

dr 1+tan9f(tan9)d9
r f(tan®) —tanf

Example 4.2 :
_ . . LTty
Consider the differential equation y' = —=. Let y = xz.
*T—y
1 1+ 22
The differential equation becomes xz’' + z = 1 tz = z = 1+ i .
—z -z

1 1
Then In |z|4c = tan™! 2 — 3 In(1+ 2?%) or tan_l(g) ~3 In(z? +5?) = In |z|+c.
x

d
Using the second method, we get & df, then Inr =6 + c.
r

Example 4.3 :
Consider the differential equation y’ = L:ry Let y = 2.
rry
1—
The differential equation becomes zz’ + z = Hiz Then
z
,  1—2z _1—22722

mz—1+z—z— 1+2
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2=—1++/2 are singular solutions.
1
For z # —1 £+ /2, we get /&dz =In|z| + ¢. Then
1—22z—22
1
——In|l =2z — 2% =In|z| 4+ c and —— = \|z].
2 1 —2z — 22|

A
We deduce that 22 4+ 2z — 1 = — - We solve this equation and we get
x

A
z=-—1%4/2+ —.

x
For example y = —x + /222 + 7 is the solution to the initial value problem
y_ Y
= 5 1 — 2
V=g, YW

dr  cos(20) + sin(26)

By the second method t — =

y the second method, we get — cos(20) — sin(20)
A

\/cos(20) + sin(20)

df. Integrate both sides,

. This is equivalent to 2 — 32 4 22y = c.

we get: r =

4.1 Exercises

Solve the following homogeneous differential equations

1)y ="
y+4x’
2xy
2) y = —2
)y o
3) ayy' —y* = Va? -y
2_ 2
4)y/:I Yy
oxY

/ Yy
5) xy =y+wer,

6) zy —y= a2 +y?

7y =
2z + 2y + 1

5 Reduction of Differential Equations to Known
Types

Sometimes it is possible by change of variable, we transform the differential
equation into one of the known types.
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5.1 Reduction to Separable Form (Substitution Method)

e Consider the ordinary differential equation y’' = f(ax + by + ¢).

If b = 0 the equation is already separable.

Suppose that b # 0. The substitution z = ax + by + ¢ reduces the equation to
a separable form 2z’ = bf(z) + a, which is separable.

Example 5.1 :
Consider the differential equation ¢’ = 1+ /y —x. Take the substitution

2
1
z = y — z, the equation becomes 2z’ = /z. Then z = <2:c+c> or y =

1 2
z+<2x+c> .

Example 5.2 :

Consider the differential equation ¢y’ = (22 + y + 1)2. We define a new variable
2z =2z + y + 1. For this the equation becomes 2/ = —2 + 22. We solve this by
separating variables method.

Note that z = v/2 and z = —+/2 are solutions of the differential equation. For
2 2
z # +v/2, In V2+z = 2V/2z + ¢, or V2+z = )\62\/59”, with A € R. Then
V2 -2 V2 -2
A\e2V2r _
z= _
Ae2V2z 4 1
Ae2V2r _

Using unsubstitution, we get y = v/2 —2x —1, with A € R.

Ae2V2z 4]
Example 5.3 :
Consider also the differential equations of the form

v =2+ g(@)h(2).

This equation can be reduced to the separable form by substituting z = 2
x

Example 5.4 :
Consider the differential equation zyy’ = 3 + 222, y(1) = 2.

Let z = 2. We find 2’ = 2 = y? =22%(c + Ina?).
z
Using y(1) = 2, we get ¢ = 2. Hence, y = 22%(1 + In2?).

5.2 Reduction to Homogeneous Form

Consider the ordinary differential equation

, ar+by+c

= d—bc # 0.
cx+dy+co’ “ c7
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With the condition ad — be # 0, the lines of equations ax + by + ¢; = 0 and
cx + dy + co = 0 are distinct lines. We assume that they meet at the point
(20,y0). The above differential equation can be written in the form

y/f(dxxd+b@y®)
c(z — o) +d(y — yo)
which yields the differential equation
S (at+bz> _; (a—i—b(f))
ct+dz c+d(%)
after the change of variables t = x — zg, z = y — yo. This equation is homoge-
neous.

Example 5.5 :
2r+y+1

z—y+2°
2@+ 1)+ (y—1)
(z+1)—(y—1)"

Consider the differential equation y’ =

Take the substitution

The equation is equivalent to 3’ =

z =y —1and t = x + 1, the equation becomes 2z’ = Qtt_—'f = ?__752 If w=

2+ (2 —2 -2 3t
(;), 2 =t2 "2 The differential equation becomes: v + e

1-(%) w+1 w+1  (w+1)2

w. This equation is equivalent to:

3w’ W 1 Jr1—w 3
(w+1)(2+w?) w+1l w2+2)
Then

1 w 1
In|w+ 1|+ —=tan"'(—=) — = In(w? +2) —=3In|t| = ¢,
w1+ st () - Jn(w? +2) ~ 3l
2 1
Wheret:x—l—l,wzw.
T—y+2

5.3 Exercises
Find the solution of the differential equation
y'=(y—2)?+1.

Solve the following differential equation
dy 1—4dz—4y

= , 0.
dx x4y Y7
. . . . / Y 1 + Yy 2
Solve the following differential equation y’ = STy OO {(z,y) e R*:
x1—uxy

x>0, y>0, xy #1}.



34

6 Linear Differential Equations of First Order

The general linear first order differential equation has the form
a(z)y’ + b(x)y = c(x).

where a, b, ¢ are continuous functions on some interval I.

To have the normal form y' = f(z,y) we have to divide both sides of the
differential equation by a. This is possible only on the set where the function
a is zero free. After possibly shrinking the interval I we assume that a # 0 on
I. The differential equation has now the standard form

y' = a(x)y + b(x), (1.11)

with a and b, both continuous function on an interval I.

6.1 Resolution of the Homogeneous Differential Equation

The homogeneous differential equation associated to the differential equation
(1.11) is the following equation

y' = a(z)y. (1.12)
y = 0 is a solution and any other solution is non zero.
/
d
We can write y—(x) = —In(y) = a(x).
Y dx
Integrating both sides, we derive In |y(z)| = A(z) + ¢, or y = Ae?®)| where
A € R and A any anti-derivative of the continuous function a. (Ae?®) is called
the general form of the solution of the homogeneous differential equation (1.12).

A(z)

6.2 Resolution of the Inhomogeneous Differential Equa-
tion

To solve the differential equation (1.11), we propose two methods.

6.2.1 Method of Variation of Constant

Theorem 6.1.

If yo is a particular solution of the differential equation (1.11) and z the general
solution of the homogeneous differential equation, then the general solution of
the differential equation (1.11) has the form y = yo + z.
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We look for a particular solution of the differential equation (1.11) in the
form y = \(x)e®). We differentiate both sides and we derive that

N(z) = b(z)e= @),

Integration both sides we have

)\(;v):/ b(t)e  AWdt + ¢z € I.

0

So yo = A / b(t)e=A®dt is a particular solution and the general solution
. Zo
is

y(z) = Xed@ 4 eA(I)/ b(t)e= A,

Zo

Theorem 6.2.
The set of solutions of the differential equation (1.11) on I is

S = {t — @ 4 A@) / b(t)e Adt, X eR}.

Zo
where A is any anti-derivative of the continuous function a on I.

Example 6.1 :
Consider the following differential equation: zy’ + 2y = %
T
A
zy +2y=0 < y= — - The variation of the constant method yields that
x
1

;g2 _c r—tan" "z
)\ —#,theny—ﬁfT
. . xr—tan 'z . . r—tan" 'z
Since lim ————— =0, then the only solution of on Ris y = ———.
xz—0 $2 .132

6.2.2 Method of Integration Factor

We multiply both sides of the differential equation (1.11) with a factor ¢(z) # 0.
The differential equation becomes c(z)y'(z) = c(x)a(z)y(z) + c(z)b(x). This
differential equation is equivalent to the differential equation (1.11), (i.e. has
the same set of solutions). We choose the function ¢ so that the previous
differential equation has the form
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For this, the function ¢ must fulfills ¢/(z) = —a(z)e(z), and ¢(z) # 0 for all
zel

By solving this linear homogeneous differential equation, we obtain c(z) =
e A with A any anti-derivative of the function @ on I. This function is
called an integrating factor.

The differential equation (1.11) is reduced to

%(c(x)y(x)) — c(a)b(x). (1.13)

Integrating both sides, we get
c(x)y(z) = /c(m)b(w)dm +C = /b(m)e‘A(z)dx +C,
with C' € R. Solving for y, we get
y =A@ /c(m)b(w)dm + CeA@) (1.14)
as the general solution for the general linear first order
y' = a(z)y +b(z).

The first part, yo(z) = @ /b(x)e*A(I)dx is a particular solution of the

inhomogeneous differential equation, while the second part, y;(z) = Ce=A®)
is the general solution of the associate homogeneous solution.

Example 6.2 :

Consider the differential equation 3’ + 2xy = z. The integrating factor is
2

c(x) = e” . Hence, after multiplying both sides of our differential equation, we

get

z? _ z?
o (" y) = ze

which, after integrating both sides, yields
x2 582 1 xZ
et y= [ xe* de+c= 56 +c.

Hence the general solution is y = % + ce~ ",

Example 6.3 :

Consider the differential equation zy’ — 2y = z3sinz, x € (0,4+00). The
standard form of this differential equation is:

2
y ==y +a’sin.
x
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2z _ I% The simple form of the differential

The integrating factor is c(x) = e
)

x2

3

.oo.d . .
equation 1s: — ( ) = zsinz, then y = —z° cosz + z?sinz + cx?.

dx
Example 6.4 :
Consider the following differential equation: 3’ = 3yx? 4+ 2°, y(0) = 1. y = 0 is
a solution of the linear differential equation vy’ = 3yz2.

If y # 0, after integration we get In|y| = 2 + ¢. Then y = Ae” .
1
Using the variation of parameter method, \' = 2%¢=%". Then \ = —g(ac3 +

l)e*””3 + ¢ and the general solution of the differential equation is

1
y = _5(1 +2%) + A

6.3 The Bernoulli Differential Equation

The general Bernoulli’s differential equation is
y' +p()y(@) + q(x)y®(z) =0, (1.15)

where o € R\ {0}, p,q: I — R two continuous functions.
The open set where the differential equation is defined is Q@ = Rx]0, +o00[=
{(z,y); y > 0}. By multiplying by y~<, we get

y‘“% + p(@)y'~*(2) + g(x) = 0.

If z = y' =2, the differential equation is equivalent to

1 dz

—— 22 (@) + p(a)2(2) + a(2) = 0. (1.16)
This differential equation is linear in z.
Example 6.5 :
Consider the differential equation ' — zy + 3> = 0. We set z = i, we get
z2/—2—1=0. Then z=Xe* — 1 and y = 1 .
Ae? — 1

6.4 Riccati Differential Equations

The general Riccati ’s differential equation is
v = a(x)y® + b(x)y + c(z), (1.17)

where a,b,c: I — R three continuous functions.
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We assume that we have a particular solution yy of the differential equation
(1.17).
Set y = yo + z. y is solution of (1.17) if and only if:

yo+2 = al@)(yo+2)* +b(x)(yo + 2) + c(x)
a(x)ys + a(x)z?® + 2yoa(z)z + b(z)yo + b(x) 2z + c(x).

This differential equation is equivalent to
2 = a(x)2* + (2yo(z)a(z) + b(x))z.

This is a Bernoulli differential equation with a = 2.

Example 6.6 :
(1—2®)y + 2%y +y* — 20 =0.

We remark that yo(x) = 2? is solution. We set y = 22 + 2. The differential
equation satisfied by z is
(1— 232 + 322+ 22 = 0.

If w= %,
(1 — 23w + 322w+ 1 =0,

;_ 3z? 1 :
orw' = Przw+ =0, if v # 1.

/ 3 2
The linear homogeneous differential equation associated is v 1% Then
—x
A
Injw| = —In|l — 23| +cor w = =3 In use the method of variation
—x
N 1
of constant, we find = . Then N = 1 and A(z) = z. The
1—2a3 1—2a3 \
general solution of the linear differential equation is w(z) = % Then
—x
y:x2+z:x2+i:m2+ ;;“"; and
(@) Ar? +1
x) = .
Y T+ A

6.5 Exercises

Solve the following differential equations:
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Consider the following differential equation: xy’ + 2y =

39

y —ry=uz, 7) wy +(2° +y) =0,
y —y =coshzx 8) y + 2ay = e 7,
/
+ 2y = e”, .
Y Y 9) y' cosx = (ysinx + e%),
' _
zy' + 2y = cosz,
/I _ L 2x+43
y’:1+2zy, 1O)y*6z+y7
y' 4+ ytanx = sin(2x), 11) a2y —y = 2?sinx,

x
1+ 22

1) Solve the differential equation on R*.

2) Prove that there exists only one solution on R. Determine this
solution.

The goal of this exercise is to find the global solutions of the following
differential equation:

z(1+22)y — (22— 1)y = —2z (1.18)

Consider the following differential equation (1.19) on each of the intervals
I = (—00,0) and I, = (0, 400) by:

1)

i.

ii.

ii.

’ .182 — 1 2
_ =_ 1.19
Y x(1+ xg)y 1+ 22 (1.19)
. ’ $2 -1
Solve the homogeneous equation y — ——— <y =0on [ =
z(1+ x?)

(—00,0) and on I = (0,400)

Determine the solution h; of the homogeneous equation on I,
such that hy(—1) = —1 and the solution hs of the homogeneous
equation on Iy such that ho(1) = 1.

Solve the differential equation (1.19).

Determine the solutions g of (1.19) on I; such that g;(—1) =
—1 and the solution go on I3 such that go(1) = 1.

3) Define on R the following function f:

g1(x) + Ahy(z) si <0
f(x) = « si x=
g2(x) + pha(x) si x>0

where A, u, 0 € R.
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4) Determine the conditions on «, A and p such that the function f is
continuous at 0. In what follows, we assume that this condition is
satisfied .

5) Deduce the set of solutions of (1.18) on R.

The goal of this exercise is to solve on R the following differential equation:

c(142%)y — (2? — 1)y = -2z (1.20)

Consider for this the differential equation (1.20) defined on each of the
interval I; =] — 00, 0[ and Iz =]0, +oo[ by:

1) i Solve the homogeneous equation of the equation (1.20) on the
intervals I; and Is.

ii. Determine the solution h; of the homogeneous equation of the
equation (1.20) on the interval Iy such that hy(—1) = —1 and
the solution hs of the homogeneous equation of the equation
(1.20) on the interval Iz such that ho(1) = 1.

2) i. Determine a particular solution g; of the differential equation
(1.20) on I such that ¢g1(—1) = —1.
ii. Determine a particular solution go of the differential equation
(1.20) on I such that go(1) = 1.

3) Let A, u,« be three reals numbers. Define on R a function f as
follows:

g1(x) + Ahy(z) if <0
flz)=4 o if =0
g2(x) + pha(x) it x>0
Compute lim f(z) and lim f(z).
z—0— z—0t

4) Deduce a condition on «, A and p such that the function f is con-
tinuous at 0.
Assume in what follows that this condition is satisfied .

5) Prove that the function f obtained is differentiable on R.
6) Deduce the set of solutions of the differential equation (1.20) on R.

Solve each of the following, finding the general solution, or the solution
satisfying the given initial condition.

1) zy +2y ==,



2) ¢y —ytanx = ,
cosx

/ Y

_ .2
A Sk

3

U~

)

)

) ¥ — Ty = 322 — 4u,
) (22— 1)y =1— 2wy
)
)

~N

y=xz(1—1y'), y(1) :i
y +ay—e ®=0.

0

y' + sin(x)y = cos(z) sin(z),
y(0) =0,
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Solve the following differential equations:

Y
1
Vo =
2) y —xy=u,
3) y' —y = coshz,
4) y' + 2y = ",

Solve these Bernoulli equations
1)y +y=2zy°
2) 22y — P = xy.
3) =y +ay+y* =0,

2 2
) y+2 Ly,
x x

5) zy +2y—y? =0,
Y 1

6) y'=-+—.
z oy

Solve the Riccati equations

1)y =1-2a2+y?

5) xy’ + 2y = cos,

6) v =z + 2y,

7) ¥ + ytanx = sin(2z),
)

8) y' cosz = (ysinz + ),

2) zy’ — 2y +y? =2, (y = 22 is a solution)






2 Higher Order Linear
Differential Equations

1 Basic Properties of Linear Differential Equa-
tions of High Order

1.1 Introduction

Definition 1.1.
A linear ordinary differential equation of order n is an equation that can be
expressed in the form

a0y™ + ary™ V) -+ any = f, (2.1)

where ag,...,a, and f are continuous functions on an interval (a,b) and that
ap(z) # 0 for all z € (a,b). The points where ap(x) = 0 are called singular
points. Therefore in this chapter we assume that ag(x) # 0 for all = € (a, b).
The right-hand member [ of the differential equation (2.1) is called the non-
homogeneous term. If f is identically zero, the equation (2.1) is called homo-
geneous.

1.2 Initial value problem for the homogeneous equation

Theorem 1.2. [Existence of Solutions]
Consider the homogeneous linear differential equation

a0y ™ + ary™ Y 4+ apy = 0, (2.2)
, where ao, ..., a, continuous functions on an interval (a,b) and ag(x) # 0 for
any z € (a,b).
Then for any zg € (a,b) and ¢y, ..., c,—1, n arbitrary real numbers, there exists

a unique solution y of the equation (2.2) such that y(zo) = co, ...,y " (zo) =
¢n—1- This solution is defined on the entire interval (a,b).

43
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Remark 7 :

1. Without the condition ag(z) # 0 for any = € (a,b), the existence of
solution may be not true. For example, consider the equation: zy'+y = 0,
with (1) = 0. The only solution of this equation is y = 1. This solution
id defined on R*.

2. If y1,...,ym are solutions of the homogeneous differential equation of
(2.2), then for all ay,...,a,; € R, a1y1 + ... + amym is also solution of
the homogeneous differential equation.

Definition 1.3.
The functions f1,..., f,, are called linearly independent on (a,b) if the only
solution of

arfi(@)+...+amfm(z) =0, Vz € (a,b)

isa; =...=a, = 0. Otherwise, the functions are called linearly dependent.
Example 1.1 :

™
1. The functions sin z, cos z are linearly independent on the interval [0, 5]
™
3]

If asinz + becosxz = 0 for all z € [0, 5 then for x = 0, b = 0 and for

s
T = 5 a=0.

We can also prove that sinx, cosz are linearly independent on any non
trivial interval.

2. The functions e*,sinx,cos(2x) are linearly independent on the interval
™
0,1
0.7] ]
5]

If ae® + bsinx + ccos(2z) = 0 for all = € [0, 5 ,then forx =0,a+c=0

and for x = g, aez +b = 0. Also we can differentiate this function and
we get: ae® 4+ beosz — 2¢sin(2x) = 0 for all = € [0, g} Also for z = 0

andx:g,wehave,aer:Oanda:O. Thena=b=c=0.

We can also prove that e, sin z, cos x are linearly independent on any non
trivial interval.

3. The functions sinz, cosz,sin(xz 4+ 1) are linearly dependent on any non
trivial interval. Indeed, sin(z + 1) = cos1sinz + sin 1 cosz.

Theorem and Definition 1.4.

The homogeneous linear differential equation (2.2) has n solutions linearly in-
dependent. Further, if fi,..., f, are n linearly independent solutions of (2.2),
then every solution f of (2.2) is a linear combination of fi,..., fu:

f=cfi+...+cnfn, (2.3)
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for some cq,...,c, € R.

The expression f in (2.3) is called the general solution of the homogeneous
equation (2.2) and {f1,..., fn} is called a fundamental set of solutions of this
equation.

Proof .

Let o € (a,b). According to Theorem (1.2), for all 0 < k < n — 1 there exists
a solution f of (2.2) satisfying

) (wo) = 0,¥) £k, £ (w0) = 1.

The solutions fx, 0 < k < n — 1, are linearly independent on (a,b). Indeed,

n—1
suppose that there exist ¢, . .. c,_1 such that Z ek fr(z) =0, for all z € (a,b).

k=0
n—1

For = = x(, we have ¢y = 0. Differentiating we see that Z ckf,gj)(m) =0, for
k=0
all z € (a,b) and 1 < j <n— 1. For z = xg, we have ¢; = 0.
Let 3 be a solution of the equation (2.2) and let y(z¢) = ao, ...y D (z¢) =

n—1
@p—1. The functions y and z = Z a;fj.
§=0
Since f;k)(xo) =6, for all 0 < j,k < n — 1, then y¥)(zy) = 20)(x0) for all
0<j<n—1. Theny=z.
g

Example 1.2 :

1. Consider the differential equation x2y” —zy'+y =0for z € (0,+00). The
functions y; = x and yo = % are solutions of the differential equation.

Then the general solution is y = ax + —.
x

2. {sinz,cosz} is a fundamental set of solutions of the homogeneous differ-
ential equation y + y = 0. Then the general solution of this equation is
y = asinx + bcosx, with a,b € R.

3. {e”,ze} is a fundamental set of solutions of the homogeneous differential
equation y — 2y’ +y = 0. Then the general solution of this equation is
y = (ax + b)e”, with a,b € R.

4. {e®,cosx} is a fundamental set of solutions of the homogeneous differen-
tial equation y (cosz +sinz) — 2y’ cos x +y(cosx —sinx) = 0. Then the
general solution of this equation is y = ae® + bcos z, with a,b € R.
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Remark 8 :

If y1,...,ym are linearly independent, we will construct a differential equation
of order m such that {y1,...,ym} is a fundamental set of solutions of this
equation.

We give now a simple criterion for determining whether or not n solutions
of (2.2) are linearly independent.

1.3 The Wronskian and Linear Independence

Definition 1.5.

Let f1,..., fn, n functions defined on an interval (a,b) each of which has an
(n — 1) derivative. The determinant
fi f2 o I
A oo o
W= . : . (2.4)
1(n—l) fg(n_l) o 7(Ln—1)

is called the Wronskian of the functions fi,..., fy.

Theorem 1.6.

Let fi,..., fn solutions of the n*-order homogeneous linear differential equa-
tion (2.2). These functions are linearly independent on (a, b) if and only if the
Wronskian W is not the zero function on the interval (a,b).

We have further:

Theorem 1.7.
The Wronskian of n solutions fi,..., f, of (2.2) is either identically zero on
(a,b) or else is never zero on (a,b).

Proof .
Using the fundamental properties of the determinant, we have
h  f2 oo I
, (TR T
Wiz) = | . : :
() 4(m) (n)
1 > R
fi for o I
R Y A
- ap| : :
1(n—l) f2(n—1) o 7(ln—1)
= —a—IW(a:).

ag
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Then
_ / fat)
W(z) = W(xg)e o ao(?)
g
Example 1.3 :
1. The functions sin x, cos x are solutions of the differential equation y” +y =

0 on any non empty open interval (a,b). The Wronskian of sinz, cos z is

sinx  cosx . . .
= = —1. Then sinx, cos x are linearly independent on

cosr —sinx
the interval (a,b).

. Let f(z) =sinz, g(x) = cosz, h(z) = sin(z 4+ 1) on any non empty open

interval (a,b). These functions are solutions of the differential equation

sinx  cosx  sin(x+1)
y +y = 0. The Wronskian of f,g,hisW = | cosx —sinz  cos(z + 1)
—sinz —cosx —sin(x+ 1)

0, since the first and the third row are proportional. Then f, g, h

Theorem 1.8.

Let fi,..., fn be n linearly independent functions (a,b) of class C™. There is
a linear differential equation of order n such that {f1,..., fn} is a fundamental
set of solutions of this equation.

Proof .
Consider the linear differential equation defined by:
Y i o I
y VTR 4
; : .| =0.
n— n—1 n—1
Yo g ey
This equation is of order n since fi,..., f, are linearly independent.
By definition the set {f1, ..., f»} is a fundamental set of solutions of this equa-
tion.
g
Example 1.4 :
1. Consider the functions f = sinz and g = cosx on R. The functions f, g

are linearly independent. Consider the equation defined by

Y sinx cosT

. 2
y  cosx —sinz|=y +y=0.
"

y —sinx —cosx
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Then {f, g} is a fundamental set of solutions of the equation y +y=0.

2. Consider the functions f = sinz, g = cosz and h(z) = e* on R. The
functions f, g, h are linearly independent.

xT

Y sinx cosTt e

/ 3 x

Yy cosx —sinz e v 3)

y'  —sinz —cosz €* =2y Y )
y®  —cosx sinz e

Then {f,g,h} is a fundamental set of solutions of the equation

y@ -y +y —y=0.

1.4 Reduction of the Order of a Homogeneous Equation
Consider now the homogeneous equation
y™ +ary" Y 4 any =0,

where a1, ..., a, are continuous functions on an interval (a, b).
Suppose we have a solution y; # 0 of the equation. We look for a solution

in the form y = wy;, where u is some function. In use of Leibniz formula:
k

k
(uyl)(k) = E ( > (k=3),() | Since y1 is a solution of the differential equation,
: J
7=0
then uY; is also a solution if and only if

z":(j) (n=3),, (J>+Z:ak i() (k=1),,) | — ¢,

j=1 =1

Then v fulfills a linear differential equation of order n in the form y™ +
bly(”fl) + -+ b,_1y" = 0. This method is called reduction of order.

Example 1.5 :

1. Consider the differential equation y” -3y +2y=0.
y1 = e is a solution of the differential equation. If yo = uy; is a solu-
tion, we must have ©" —u/ = 0. Then u = a + be* and yo = €2* is a
second solution of the equation y” — 3y’ + 2y = 0 and y1, y2 are linearly

independent.

2. Consider the differential equation (1 —22)y” — 2y’ +y = 0 on the interval
(1,4+00). y1 = x is a solution. Consider a solution y in the form y = zu,
with % not constant. The function u fulfills the following differential

A
22?2 — 1

equation: z(z2—1)u" + (322 —2)u’ = 0. This yields that u/ =

and y, = v/z2 — 1 is a solution.
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3. Consider the differential equation (z — 1)y — zy’ +y = 0.
y1 = x is a solution of the differential equation. If yo = xu is a solution,

T !
we must have z(z — 1)u” + (=22 + 22 — 2)u’ = 0. Then v’ = <e> and
x

yo2 = €% is a solution of the differential equation.

4. Consider the differential equation 1:2y” — Tzy 4+ 15y = 0, for z > 0.
y1(z) = 2 is a solution of the differential equation. If yo = ux® is a
solution, we must have zu — u/ = 0. Then y, = 2° is also a solution.

1.5 The Non-Homogeneous Equation

Any function y,, that satisfies (2.1) is called a particular solution of the equation.
For example, sin x is a particular solution of the differential equation xy“ +y +
TY = Cos .

Remark 9 :

If y1,...,ym are solutions of the homogeneous equation (2.2) on an interval I
and y, is any particular solution of the non-homogeneous equation (2.1) on I,
then the linear combination

ayr+ .-+ CmYm + Yp

is also a solution of the non-homogeneous equation (2.1).

Theorem 1.9. [General Solution of the Non-Homogeneous Equations]

Let y, be any particular solution of the non-homogeneous differential equation
(2.1) on an interval I, and let {y1,...,yn} be a fundamental set of solutions of
the associated homogeneous differential equation (2.2)) on I. Then the general
solution of the equation (2.1)) on the interval I is

y=cayn+...+cYn+Yp

where the ¢q,...,¢c, € R.

Proof .

Let y be any solution of the differential equation (2.1)), the function y —yj, is a
solution of the homogeneous equation (2.2)). Then there is ¢y, ..., ¢, € R such
that y = c1y1 + ... + cnYn + Yp- a
Example 1.6 :

Consider the differential equation (sinz—cos )y 42y sin +y(cos z+sin ) =
2. The function cosx is a particular solution and {e”,sinz} is a fundamental
set of solutions of this equation. Then the general solution of this equation is
y = axe® + bsinz + coszx, a,b € R.
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Theorem 1.10. [Superposition Principle]
Consider the differential equation

y(n) Jraly(”*l) 4+ Fay=by+...+ by, (2.5)

where ay,...,ay,,b1,...,b, continuous functions on an interval (a, b).
If y, is a particular solution of the non-homogeneous differential equation

y™ + a4t any = by,

for all 1 < k < m, then y; + ... + y.m, is a particular solution of the non-
homogeneous differential equation (2.5)).

Example 1.7 :
Con51der the differential equation y s 2y +y=e*+2e % +sinz.

Ze is a particular solution of the differential equation y gt 2y +y=c¢e"

2

x“e” " is a particular solution of the differential equation y "4 2y +y =2e".

]. "
—5 cos x is a particular solution of the differential equation y +2y'+y = sin z.

—T

1 1
Then y, = Zem + 22 — 5 cosz is a particular solution of the differential

equation y + 2y +y = e® + 2e~* + sinz.

1.6 Exercises

Prove that the set of functions {y; = €% yo = €2*,y3 = z} is linearly
independent on any non empty open interval.

1-2| (a) Prove that the set of functions {y; = €*,y2 = Inx} is linearly inde-
pendent on any non empty open interval.
(b) Find a differential equation of order 2 such that {y; = e*,ys = Inz}

is a fundamental set of solutions of this equation.

Check that e® is a solution to y” — 2y’ +y = 0, and then use reduction
of order to find a fundamental set of solutions.

Check that e?® cosz is a solution to y” — 4y’ + 5y = 0, and then use
reduction of order to find a fundamental set of solutions.

Check that y = x is a solution to (z — 1)(z — 2)y” — 23/ + y = 0. Then
use reduction of order to find a second linearly independent solution.

Without solving, determine the Wronskian of two solutions evaluated at

x = 4 for the following differential equation: 2w2y” +ay —3y =0. Is the
Wronskian defined for all z?
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Verify that 1 and /z are solutions to the differential equation yy” +
(y")? = 0 for > 0. Then show that a + by/7 is not in general a solution
of this equation. Can you explain why this result doesn’t contradict the
method of linear superposition?

If the functions y; and y, are linearly independent solutions of y” —
a(x)y'+b(z)y = 0, determine what the necessary and sufficient conditions
are such that the functions y3 = Ay, + By. and also y4 = Cy; + Dys
form a linearly independent set of solutions.

1-9| 1) Show that y = z is a solution of the following differential equation:
22y — (22 + 22)y + (x +2)y = 0.
2) Use reduction of order method to find the general solution of this
differential equation.

1-10| 1) Show that y = e” is a solution for z > 1 of the following differential
equation: (z — 1)y” —zy +y=0.

2) Find a second linearly independent solution z, and check that the
Wronskian of y and z is non-zero for z > 1.

2 Linear Differential Equations With Constant
Coefficients

2.1 Homogeneous Equations

We consider now the differential equation (2.2)) with ao, ..., a, constants in R.
We seek for solutions in the form y = €™, where r is constant. y is a solution
of (2.2)) if and only if r™ +a;r" ' + ...+ an_17 + a, = 0. This equation is
called the characteristic equation or the auxiliary equation of (2.2)).

In what follows, we consider the linear homogeneous equations of order 2
and with constant coefficients.

y +ay +b=0

The characteristic equation is 72 + ar + b = 0. We have three cases

1. If A = a® —4b > 0, the characteristic equation has two different solutions
r1 and 9. {€™% "7} is a fundamental set of solutions of the equation.

2. If A = 0, the characteristic equation has one solution r = —§. {e"*, ze"}
is a fundamental set of solutions of the equation.
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3. If A <0, the characteristic equation has two different complex solutions
ry and ro. T = a+if, 1o = a —iB. {e* cos(fBzx),e** sin(fx)} is a
fundamental set of solutions of the equation.

Example 2.1 :

Ly — 3y +2y = 0, {e%,€e2*} is a fundamental set of solutions of the
equation.

2. y” +4y = 0. {1,e~**} is a fundamental set of solutions of the equation.
— 3 = 3
3.y +y +y =0 {e= cos 7:5,67 sin gx} is a fundamental set of
solutions of the equation.
4.y +2y +y =0. {e* ze *} is a fundamental set of solutions of the

equation.

2.2 Non-Homogeneous Equations

We consider the differential equation

v +ay +by = f(z). (2.6)

We give two methods to construct a particular solution of the differential
equation (2.6).

Theorem 2.1.

1. Let {y1,y2} be a fundamental set of solutions of the homogeneous equa-
tion. For any differentiable function y on I, there exists a unique pair of
differentiable functions (U, V) on I such that:

y=Uy +Vya
{y’ = Uy + Vs 27

2. If y is a solution of the differential equation (2.6)), there exists a unique
pair of differentiable functions (U, V') on I such that:

U/y1 + V/yg =0
Ui+ VY, =

This method is called the change of parameters method.

Proof .
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1. For any x € I, the determinant of the linear system (2.7)) is W (x) # 0,
thus we have a unique solution

y(@) ) n() )
oy = S ) b v

2. If y is a is a solution of the differential equation (2.6). There exists a
unique pair of differentiable functions (U, V) on I satisfying the system
(2.7). If we differentiate the first equation of the system, we get:

U/yl + V/yQ = 0. (2.8)

y is twice differentiable, then

Y =Uy” + Vy" +U'y; + V'ys. (2.9)

Now y is a solution of the differential equation (2.6) if and only if

{U’y1 +V'ys =0

Uy +Viyy=f"

This system is a Crammer system, so it has a unique solution y = Uy; +
Vyz.

Thus the set of solutions of the differential equation (2.6) is the set {y =
Uy +Vya, } where U, V differentiable functions solutions of the following
system:

Uyr+V'ya =0
Uyi+V'yy=f~

Example 2.2 :

1. Consider the differential equation 3y +y = 3+ cos(2z)

The general solution of the homogenous differential equation is y =

acosz + bsinz. Using the change of parameters method, y = U cosz +
Vsin x, we find:

U'cosz+V'sinz =0

—U'sinz + V' cosx = m :

Then

1 1
U= ~5 tan"'(cos ) + a, V = ——tan"!(
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2.3

. Consider the differential equation y”’+4y'+5y = cosh(2z) cos x. The char-

acteristic equation is r?+4r+5 = (r+2+i)(r+2—i). {e72% cos(2z), e ¥ sin(2x)}

is a fundamental set of solutions of the equation.

Using the change of parameter method, the general solution of the equa-

tion takes the form: y = Ue™2® cos(z)+ Ve 2 sin(z), with U’e 2% cos(z)+

V'e=2%sin(z) = 0 and U'e~ 2% (—sin(x) — 2 cos(z))+V’e™ 2% (cos(z) — 2sin(z)) =
1 1 1

cosh(2z) cos(z). Then U = -3 cos(2x)+ %641 sin(2z)— Ee“ cos(2x)+a

and V = 5e*sin(22) 4+ 55 cos(2z) + £ + § sin(2z) + 15 +b.

Particular Cases of Non-Homogeneous Term
If the function f is a polynomial of degree n. We look for a particular
solution as polynomial.
o If b £ 0, there exists a polynomial of degree n as particular solution of
the differential equation (2.6).
e If b = 0 and a # 0, there exists a polynomial of degree n+1 as particular
solution of the differential equation (2.6).

o If b = a = 0, there exists a polynomial of degree (n 4 2) as particular
solution of the differential equation (2.6).

I f(x) = P(x)e*®, with P a polynomial of degree n. We define the

function z by: z = e™**y.

y/ — aeazz+eamzl’ yw — a2y_|_ 20{60&2/ + eaT 7

Y +ay +by=e"Px) = e*(a’z4 202 + 2" +aaz+ az + bz)
e (2 + 2/ (a4 2a) + z(a® + aa + b)).

. Then z verifies the following differential equation

2+ 2 (a4 2a) + z(a® + aa + b) = P(x).

e If o is not a solution of the characteristic equation, then there exists a
polynomial @ of degree n such that e**( is a particular solution of the
differential equation.

elfa®? +aa+b=0and a+2a # 0, (i.e. ais a simple zero of the
characteristic equation (algebraic multiplicity 1)). In this case there exists
a polynomial @ of degree n + 1 such that e**() is a particular solution of
differential equation.

elfa’?+aa+b=0and a+2a = 0, (i.e. « is a solution of the
characteristic equation with algebraic multiplicity 2). In this case, there
exists a polynomial @ of degree n + 2 such that e**@Q is a particular
solution of the differential equation.
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2.4 Exercises

Solve the integral equation for y(z):
y(z) + 8/ y(t)sin(x —t)dt =9, x> 0.
0

Let g: R — RT be a continuous function and consider the following
differential equation

v +y=g (2.10)
1) Let h: R — R be the function defined by:

h(z) = sinx/ g(t) costdt — cosx/ g(t) sintdt.
0 0

i. Prove that h is a solution of the differential equation (2.10) .
ii. Prove that h(z) = / g(t) sin(x — t)dt.
0

T

iii. Prove that h(z)+h(z+7) = / g(z+1) sintdt and deduce that
0
h(z) + h(z +7) >0, Ve € R.
2) 1) Prove that any solution f of (2.10) on R fulfills f(z)+ f(z+m) >
0,V e R.
2) Deduce that if a function F: R — R is of class C2 and F" (z) +
F(z) > 0,Vx € R, then F(z)+ F(z +7) >0, Vz € R.
1

Solve the differential equation y” +ty= ?""TS(Q@.

Consider the differential equation 3 + Ay = 0, with A € R.

1) Give the general solutions for this differential equation.
2) Determine the values of A for which there exists a non zero solution
y of the differential equation y + Ay = 0 and fulfills y(0) = y(1) = 0.

2-5| 1) Determine the primitives of the functions e®* sin?
with o # 0.

2) Find two linearly independent solutions of the differential equation
y" —2ky’ + (k* + 1)y = 0, where k € R.

3) Solve the differential equation y” — 2ky’ + (k* + 1)y = e sinx.
Solve the following differential equations:

x and e*” sin x cos x,
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1)
2)
3)
4)
5)
6)
7)

y" — by + 6y =0, 8) v — 2y +2y=€"+u,

4y + 4y +y =0, 9) y" 4+ 4y = sin(3z),

y'+y +y=0, 10) y" + 4y = cos(2z) + cos(4x),
+ 2y = 2x% — 3z + 1,

Zy” +y2y +y3y—x +2z -1, W'ty = 1+sin?a’

' =2 4y =e", 12) y"” +4y'+5y = cosh(2z). cos z,

y" — 1y — 2y =ax2%e73, 13) " — 6y’ + 9y = sinh® x.

Consider the following differential equations: :4” —y = 1andy”+y = 1.

w N =

)
)
)
)

=~

Solve these differential equations.
Give the bounded solutions on R of these differential equations.
Give the even solutions of these differential equations.

Let a € R*. Examine if there exist solutions of these differential
equations which vanishes at 0 and at a.
Discuss according to the values of a.

Let «, 8 be different real numbers.
Solve the following differential equation y — (o + 8)y’ + afBy = 0.

2) Determine the solutions of the differential equation y” +y = cosz.
3) Determine the solutions of the differential equation y” +y=——.
3 + cos(2x)
We consider the following differential equations
y —y=1 (2.11)
and .
y +ty=1 (2.12)

1)

2)

Solve the differential equations (5.11) and (5.12).
Give the solutions of (5.11) and (5.12) which have the same initial
conditions y(0) = «,4'(0) = 8, a, B € R.
Give if there exists
1) the bounded solutions on RT for the differential equations (5.11)
and (5.12),

2) the even solutions on R for the differential equations (5.11) and
(5.12).



57

3) Let a € R*. Say whether there exist solutions for the differential
equations (5.11) and (5.12) vanishing at 0 and at a. Discuss accord-
ing to the values of a.

4) 1) Let A € R, f and g two differentiable functions on R* such that

x

P40 < g. We set h(z) = / Mg(t)dt.
0
Compute h’ and deduce that

f(x) <e ™ f(0) + e h(z), VaxecRT.

2) Let o be function twice differentiable on R* such that

vz € RY, go//(x) —p(z) <1.

Let 1) be the solution of (5.11) such that 1(0) = ¢(0), ¢'(0) = ¢’(0).

Prove that V z € RT, p(z) < ¢(z). (Hint: we can use the question
a) with f = ¢’ — ¢ and A =1).

5) Let p(x) =1—e"".

1) Verify that ¢ + ¢ < 1.

2) Let ¢ be the solution of (5.12) such that ¥ (0) = ¢(0) = 0 and
P'(0) = ¢'(0) = 1.
Is p(z) < Y(z),Vz e RT?

Consider the differential equation y + Ay = 0, with A € R.
1) Give the real general solution of the equation according to the values

of \.

2) Determine the values of A for which there exists a non zero real
solution of the equation such that y(0) = y(1) = 0.

2-11| 1) Let a € R, a # 0. Determine the anti-derivatives of e** sin? 2 and
of e**sinz cos .

2) Find two linearly independent solutions of the differential equation:
y" —2ky’ + (k* + 1)y = 0, with k € R.

3) Solve the differential equation y” — 2ky’ + (k* + 1)y = e sinx.

Solve the following differential equations:
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1) ¥y =5y +6y=0,
2) 4y + 4y +y =0,
3) v +y +y=0.

4) o' +y —2y =222 -3 +1,
5) 2y + 2y +3y =2 +22 -1,
6) y' =2y +y=e",
7)

y' =y =2y =a’e,

Consider the differential equation

oo

)y =2 + 2y =€+,

) ¥y’ + 4y = sin(3x),

10) y” + 4y = cos(2x) + cos(4x),
)

y' +y= L
1+sin?z’

12) y”+4y’+5y = cosh(2z). cos z,
13) y” — 6y’ + 9y = sinh® z.

y =2 +y=e"(x+cosa)

Consider the differential equation

y +y +y=cosz

Consider the differential equation

y” — 3y +2y = e” + ze*®

Solve the following second-order differential equations

1)y —ay

2wy =)

3) y T=y(1+3y%), y(0)=1,y(0) =

4) y " -2y = -3¢+ 7 —sin(z), y'(2)=3, y(0)=3
y' +3y +4y =0, y(0)=1,9(0)=0.

Find the general solution of the following differential equations:

1) y® +3y" +3y +y =0,

2) y ™ +4y®) +6y" +4y +y =0,
— 4y —4y =0

3) y@ 4+ 4y® 4 39"

Let g: R — R be a continuous function such that g(z) > 0, Vo € R and
we consider the following differential equation

y ty=g

(2.13)
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1) Let h: R — R be the function defined by:
h(z) = Sin:c/ g(t) costdt — cos:c/ g(t) sintdt.
0 0

a) Compute h’ and h" and prove that h fulfills the equation (2.13).
b) Prove that h(z) = / g(t) sin(x — t)dt.
0
c) Prove that h(z) + h(z + ) = [ g(x +t) sintdt and deduce that
h(z) + h(x +m) > 0.

2) a) Prove that any solution f of (2.13) on R fulfills f(z)+ f(x+m) > 0,
Ve € R.

b) Deduce that if a function F: R — R of class C? such that
F'(z) + F(z) > 0, then F(z) + F(z +7) > 0, Vo € R. (Hint: we
can take the function g = F" 4+ F and remark that F is solution of
the differential equation (2.13)).

Let E}, be the vector space of complex functions of class C* defined on R
and let o # 8 € C. We consider the linear map D: Fs — FEj defined by

D(y) =y — (a+ By + aBy.

1) Compute the kernel of D.
2) Compute y if D(y) = €%, with a =i = — 8.

3) Compute y if D(y) = with a =1=—4.

1
3+ cos 2z’

We consider the following differential equations

Yy —y=1 (2.14)
and

y +y=1 (2.15)

1) Solve the differential equations (5.11) and (5.12).
Give the solutions of (5.11) and (5.12) which have the same initial
conditions y(0) = o, y'(0) = 8, o, B € R.

2) Give if there exists

i. the bounded solutions on R* for the differential equations (5.11)
and (5.12),
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ii. the even solutions on R for the differential equations (5.11) and
(5.12).

3) Let a € R*. Is there exist solutions for the differential equations
(5.11) and (5.12) vanishing at 0 and at a. Discuss the values of a.

4) i Let A € R, f and g two differentiable functions on R* such that
I+ A <g. Weset h(z) = / eMg(t)dt.

Compute the differential of lg in term of the function x ——
e f(x).
Deduce that V o € RT, f(z) < e f(0) + e h(z).

ii. Let ¢ be function twice differentiable on R™ such that

VEeRY, () - p(t) < L.

Let 9 be the solution of (5.11) such that ¥(0) = ¢(0), ¥'(0) =

¢'(0).
Prove that V ¢ € RT, o(t) < ¢(¢). (Hint: we can use the
question a) in the case where f = ¢’ — ¢ and A = 1).

5) Let p(t) =1 — e *. verify that ¢” + ¢ < 1.
Let 9 be the solution of (5.12) such that ¥(0) = ¢(0) = 0 and
Y’ (0) = ¢’(0) = 1. Do we have p(t) < (t),VteRT?

We intend to find the functions f: R — R twice differentiable and fulfills
the following equation

flz)+ f(—x) = €. (2.16)

1) Solve the following differential equation

y +y=2coshuz. (2.17)

2) Prove that the solutions of the equation (2.16) are solutions of the
differential equation (2.17).

3) Deduce all solutions of the equation (2.16)..

222 1)y -5y +6y=0,
2) 4y +4y' +y =0,
3) ,y +y +y=0.
1)y +y —2y =222 — 3z +1,
5) 2 +2) +3y=a2+2x—1,
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6) y —2 +y=e",
Ty —y -2y =2,
8) ¥y — 2 +2y=e" +u,
9) 3" + 4y = sin(3z),

)

)

+y=——"-—
Y Y 1 + sin®

12) 4" + 4y’ + 5y = cosh 2z. cos z,
13) y” — 6y’ + 9y = sinh® z.

)
€T

3 The Cauchy-Euler equation

3.1 The Homogeneous Cauchy-Euler equation

In this section, we solve another class of linear second order equations. These
equations called the Cauchy Euler equations. The second order homogeneous
linear ordinary differential equation of the form

az?y” + bay' +cy =0, (2.18)
with a, b constants, is called a homogeneous Euler’s equation or a homoge-
neous Cauchy-Euler equation.
This equation can be reduced to linear homogeneous differential equation with
constant coefficients. This conversion can be done in two ways.
The first way is to take the change of variables z = ef. If 2(t) = y(e') = y(x),
we get 2/ = ely/(e!) = 2y and 2 = 2’ + 2%y (z). Then azy” + bxy' + cy =
a(z’ —2')+b2 +cz=az +(b—a)z + cz. The Cauchy-Euler equation (2.18)
becomes a linear differential equation

az 4+ (b—a)z +cz =0.

The second way is to look for a solutions in the form y = x”. Substituting
into the differential equation gives the following: =" (ar2 +(b—a)r+ c) = 0.
For z # 0, we have

ar? +(b—a)r+c=0. (2.19)

As in the second order linear differential equations with constant coeffi-
cients, the type of solutions that we obtain using this method depend on
whether the roots of the equation (2.20) are real and distinct, repeated or
complex.



62

3.2 Case of Two Real and Distinct Roots

If the equation (2.20) has two roots p, g, then y; = 2P and yo = 27 are linearly
independent solutions. The general solution of Cauchy-Euler equation (2.18)
is y = axP + bal.

Example 3.1 :

1. Consider the following Cauchy-Euler equation: x2y” +3xy’ —3y = 0. The
z—differential equation is z + 22’ — 3z = 0. Then z = ae? + be™ 3t and
y = ax + bx 3.

If we use the second method, we get: 72 +2r —3 = 0. Then r = 1 or
r=—-3and y = ax + bz 3.

2. Consider the following Cauchy-Euler equation: 223" — 32y’ +7y = 0. The
z—differential equation is z — 42’ + 7z = 0. Then z = ae? cos(\/gt) +
be? sin(v/3t) and y = ax? cos(v/31Inx) + baz?sin(v/31nz).

If we use the second method, we get: r2—4r4+7=0. Thenr = 2+iV/3
and y = ax? cos(v31Inx) + bz?sin(v/31nz).

3.3 Repeated Root

If the equation (2.20) has a repeated root p, then y; = 2P and ys = 2P Inz are
linearly independent solutions. The general solution of Cauchy-Euler equation
(2.18) is y = aP(a+blnx). We can find the second solution using the variation
of constant method.

Example 3.2 :

Consider the following Cauchy-Euler equation: z2y” — 3zy’ + 4y = 0.

If 27 is a solution, then 72 — 47 +4 = (r — 2)2 = 0. The general solution of the
equation on (0,+00) is y = 2%(a + blnz), a,b € R.

3.4 Case of Complex Roots

Let r = s=it be the complex roots of the equation (2.20), then y; = z° cos(t1n z)
and yo = z°sin(tIlnz) are linearly independent solutions of the Cauchy-Euler
equation (2.18).

Example 3.3 :

Consider the following Cauchy-Euler equation: z2y” + 3zy’ + 5y = 0.

If 2" is a solution, then 72 + 2r +5 = (r 4+ 1)?2 + 4 = 0. The general solution of
the equation on (0,4+00) is y = az cos(2lnx) + bxsin(21nx), a,b € R.
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3.5 The Non-Homogeneous Cauchy-Euler equation
The non-homogeneous Euler equation is written as

az®y" + bxy' +cy = f. (2.20)

To solve this equation, we look for a fundamental set of solutions of the homo-
geneous equation and use the change of parameter method.

Example 3.4 :
Consider the following Cauchy-Euler equation: z2y” + 3zy’ — 3y = €”.
{y1 = z,y2 = 273} is a fundamental set of solutions. In use of the change

1 1
of parameter method, y = Uz + Va3, we find U = Zex, V' = —Zz%® and

V = e®(2* — 42® + 1227 — 242 + 24). Then y = ax + ba ™3 + e (z* — 423 +
1222 — 24z + 24)2~3.

3.6 Exercises
Find the general solution to each of the following Cauchy-Euler equations:
1) 22y — 2zy +2y =0,
2) 2%y —ay +y=0,
3) 22y —xy +10y =0,
(Hint: Use the formula

20T = gogit — ga(elog?)ib — gagiblogr _ ga [cos(blnx)+isin(bln )]

to simplify the answer.)
4) 2%y +ay +y =0, x>0,
5) 222y +5xy’ +y =0, x>0,
6) 922y +15zy +y=0, x>0.

4 Differential Operators and Differential Equa-
tions

4.1 Action of Differential Operator on Elementary Func-
tions

1. The exponential function:

De)\z _ )\6)\:&7 Dnekz _ Anekfc
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In this case the function e**

with eigenvalue .

is called an eigenfunction of the operator D

2. The sine and cosine functions:

D?sin(Ax) = —A\?sin(\z), D? cos(Ax) = —\? cos(\z).

The functions sin(Az) and cos(Az) are called eigenfunctions of the oper-
ator D? with eigenvalue —\2.

3. The power functions

Dak = k(k—1)--- (k—n+1)zF™",

where k € N. In particular D"z = 0 for k < n.

4.2 Polynomial of the Differential Operator D

Definition 4.1.
Let P(r) = apa™ + ap_12" 1 + -+ 4+ a1x + ag be a polynomial of degree n,
where ag, a1, -+, a, are real constants. We define the operator

P(D> :(lnDn—l—anlen_l+a1D+...+ao_

P(D) is called a polynomial of differential operator D of degree n.

Theorem 4.2.
If P(D) =a,D" +a,_1D" ' +a;D+---+ ap, then

1. P(D)e® = P(\)e??.
2. P(D*)sin(Az) = P(—\?)sin(\z) and P(D?)cos(Az) = P(—\?) cos(\z).

Theorem 4.3.
If P(D) = a,D™ + a,_1D" ' + a;D + -+ + ag and f a function n-times
differentiable on R. We have

1. D" (M f(z)) = e (D + \)" f(x).

2. P(D) (¥ f(z)) = M P (D +\) f(a).

Proof .

We prove the Theorem by induction.

For n = 1: D (eMf(x)) = Ae* f(z) + M f/(z) = X (Df(x) + A) = M (D +
A f ().
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Assume the result holds for n, then

DTL+1 (ekmf(x)) — ( Amf ))

D(D

= (e)‘x D+ \N"f(z ))

= MDD+ N((D+N)"f(z))
= D+ N f(@)

The result of (2) follows from (1):

Definition 4.4.
We interpret the previous theorem as follows:

(D + /\)n _ ef)\ane)\z.

Az

the function e*® and e ** are interpreted as operators.

Definition 4.5.

Let P(D) = a, D" +a,_1D" "' +...+a1 D+ ap be a polynomial of differential
operator D of degree n.

The kernel of the polynomial P(D) is the set of solutions of the linear n-th
order ordinary homogeneous differential equation P(D)y = 0.

Theorem 4.6.

1. If P(D) = H(D —r;) where rq,...,r, are different, then the kernel of

Jj=1
P(D) is the vector space spanned by {e™% ... e™*}.
The general solution of the differential equatlon P(D)y=0is

n

_ E riT

y= )‘je 7,
Jj=1

where Ay, ..., A\, €R.

k k
2. If P(D) = H(D — ;)" , where r1,...,r) are different and an =n,
j=1 j=1
then the kernel of P( ) i
1Vect (e®,... ,x”f_le"“ﬂ) ,
where Vect (e’"i .. ,x”]"le” ) is the vector space generated by the set
of functions (e™®,..., " ~te1")}.

The general solution of the differential equation P(D)y =0 is

k
y=>» Pj(x)e”
j=1

where P; is a polynomial of degree deg P; < nj; — 1.



3. If P(D) = H (D —rj)*+ 0]2) , where n = 2m and r; # 7 or §; # 0y
j=1
forall j £k, j,k=1,...,m, then the kernel of P(D) is the vector space
generated by the set of functions

TmT

("% sin(01x),e™” cos(b1x), . .., e ™" sin(0,,x), " cos(Opx)) .

The general solution of the differential equation P(D)y =0 is

y=Y_€"" (o cos(0;z) + B; cos(6;x)),

j=1
where o, 8; € R.
4. It P(‘D) = H ((D—T‘j)2+9?)n77 where n = an and T # T} Or
j=1 j=1

0; # Oy for all j # k, j,k = 1,...,m, then the kernel of P(D) is the
vector space

@7 Vect (€797 sin(;x), e"” cos(0;x), . .. Lz e sin(0;x), z" e’ cos(0;2)) .

The general solution of the differential equation P(D)y =0 is
y= Z €717 (P () cos(0) + Q; () cos(0))

where P; and @); are polynomials of degrees < n; — 1.

k m
5. If P(D H —rj) H —55) +9]2)mj , where r1,...,r, are
different, s; # sj, or 0; # Oy, for all j # k, j,k = 1,...,m and ¥ n; +
Z mj = n, then the kernel of P(D) is the vector space

Jj=1

@;?ZlVect (e”"”, e ,x"ffle”””)
@7 Vect (€7 sin(0;), €% cos(0;z), . .. L™ e sin(f;x), 2™ T eI cos(6;2)) -

The general solution of the differential equation P(D)y =0 is

k
y = ZP]-( et 4 Ze” x) cos(0jx) + R;(x)sin(0;z)),

where P;,Q; and R; are polynomlals such that deg P; <n;—1,deg@; <
m; —1 and deg R; < m; — 1.
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4.3 Non Linear Differential Equations
The general form of a non-homogeneous linear ordinary differential equation
with constant coefficients takes the following form:
(an D™ + ap_1 D" '+ +a1D+ag)y = Po(D)y = f.
Our purpose is to find a particular solution to the previous differential equation.

Theorem 4.7.
If f(z) =e*

1. If P(X) # 0, then y,(z) = ﬁe’\w is a particular solution.

2. f P(D)=(D-XN"Q(D),1 <m <nand Q(\) # 0, then

= o (e P

is a particular solution, where P,, 1 is a polynomial of degree less then
m — 1.

Proof .
We have P(D)e = P(\)er®.

1. If P(X\) # 0, then

1 6)@
—[P(D) ()] = P(D =M.
s PO ()] = PD) (555 ) =¢
Then y = )\) e is a particular solution.
2. If P(D)= (D - )mQ( ), 1 <m < n and Q(\) # 0, then the equation
becomes P(D)y = Q(D)(D — \)™y = e. Then y = ﬁ(#xm +

P,,_1(x))e* is a particular solution, with P,,_; a polynomial of degree
less then m — 1.

Because
(D — \)"Q(D) (%$m+Pm_1)6)\m _ m< )‘Im m>
xr m 1
= Qe A D (W )

Example 4.1 :
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1. Particular solution to the differential equation
y// _ 2y/ + 6y _ €3x

3z
e 1 o3

=32 9348 11°

2. A particular solution to the differential equation
(D —1)*(D+2)(D - 2)y(x) = €".
is
_ ¢’ Loy 2.
PO -2 \8" )T 18
4.4 Exercises

Find the general solution of the following differential equations:

(a) y© — 5y —36y" =0,

(b) y© — 2y +y" =0,

(c) y(©) — 2y 4 y =e% +sinz
)

(d) y© — 2y 44" = €2 4 cosa.



3 Laplace Transformation
and Applications

1 Basic Properties of Laplace Transform

Definition 1.1.

1. A function f: [a,b] — R is said to be piecewise continuous if there is

a finite numbers a1 = a < ... < a, = b such that the function f is
continuous on the intervals (a;,aj+1), forall j =1,...n—1 and lim+ =
r—ra
f@™), lim = f(b7), lim = f(a;) and lim = f(a;r) exist and finite
T—b~ w—)a; x—)a;r

for all j = 2,...n — 1. The set S = {a; = a,...a, = b} is called a
partition of the interval [a, b].

2. A function f: [0,+00) — R is said to be piecewise continuous if f is
piecewise continuous on any interval [a, b] C [0, +00).

Definition 1.2.
Let f be a piecewise continuous function on the interval [0, 400). The Laplace
transform of f denoted by F' = £ (f) is the function defined by

N

F(s) = /0 e f(x)dx = lim e T f(x)dx

N—+oo 0

if the limit exists on R.

Definition 1.3.
A function f is said to be of exponential order if there exist constants ¢, M > 0,
and T > 0 such that |f(z)| < Me® for all z > T.

Theorem 1.4. (Sufficient Conditions for the Existence of L(f))
If f is piecewise continuous on [0, +00) and of exponential order ¢, then for all
s> ¢, L(f)(s) is well defined.

69
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Theorem 1.5.

If f is piecewise continuous on [0, +00) and of exponential order, then

Proof .

Jlim £(f)(s) = 0.

Without loss of generality, we can suppose that |f(x)| < Me® for all x > 0.

/ON =5 f(z)dz

N
< / 5| £ () dx

N
< M/ e TeYdxr = — e~ (s=a)T
0 s—a s—a
M
Then |£ < — 0
en |£(HI(s) € o
Example 1.1 :
oo Pegp 2 [T 2 VLS
1. L(Vz)(s) = Vze tdr T =" tre VU dt = Y.
0 sz Jo 282

1
2 L)) = |
3. L(e*)(s) =

s—a

—+oo

1 _ 2egr 2 /+°° 2
e Fdr " =" — e " dt =
v Vs Jo

, for s > a, but if a is a complex number, £(e**)(s)

——, for s > Rea. For example

s—a

Theorem 1.6.

Let f and g be piecewise continuous functions on [0, 4+00) and of exponential
order, then £ (af + bg) (s) = aL (f) (s) +bL (g) (s),

Proof .

Assume that |f(x)] < Me* forallz > A and [g(z)] < N
laf 4+ bg|(x) < ||a|M + |b|N|e®® for all x > max(A, B),

Then

L (af +bg) (s)

L) (s) =

1

T

Va,b € C.

+o0
— /0 (af(z) + bg(x))e™**dx

+oo +oo
= a/ f(x)efszderb/ g(x)e *"dx.
0 0

(3.1)

e for all z > B, then
where ¢ = max(a, b).



Theorem 1.7. First Shift Theorem
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Let f be piecewise continuous function on [0, +00) of exponential order. If

|f(x)] < Meb™ for all x > A, then

L(e™f)(s)=L(f)(s+a), Vb>a. (3.2)
Proof .
—+o0 —+oo
L(e*f)(s) = / fl@)e e *"dx = / f(x)e T2 gy, O
0 0
Theorem 1.8. 1
s
L(f (b)) (s) = 3 L(f(2)) (7). (3.3)
Proof .
Hoo —sz t=bz 1 Hoo _s¢ 1
L(f(bx))(s) = flbx)e *Fdr = 5 ft)e vtdt = 3 O
0 0
Theorem 1.9. Transforms of Some Basic Functions
1. £(1) = é 4. L(cos(ax)) = T for s > 0.
N nl 5. L(sinh(az)) = ———, for s >
2 E(J;)—W,HGN a. SQ*CLQ
s
6. L(cosh(az)) = ——, for s >
. a 2 _ 27
3. L(sin(ax)) = T for s > 0. a st —a
Proof .
+oo 1
1. £(1) = / e dr = —.
O S
|
2. We can prove the formula L(z") = % by induction on n € N. Also

—+o0
1
we can see that the function F(s) = / e *dx = — is differentiable
0 s

1

+oo
and F'(s) = —— = —/ re *%dx. Also F™M(s) =
0

g2

+oo
(—1)”/ z"e *Fdx.
0

From the formula (3.1),

1 1 1 b

- - _ f .
5o srn) - e s>

3. L (sin(bx)) =

(=1)™n!
sn+1 =
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1 1 1 s
4. L (cos(br)) = 5(5 T s+bi) =S for s > 0.
. 1 1 1 b
5. L (sinh(bx)) = 5(571) - s+b) =2 for s > b.
1 1 1 s
6. L (cosh(bx)) = i(s—b + s—l—b) = o for s > b.
O
Corollary 1.10.
1. ﬁ (e‘” Sln(bl')) = m7
az s—a
2. E (6 COS(ZL’)) = m
n _axr n!
Theorem 1.11. e
L"f(2))(s) = (=1)"——L(f(@)) (s). (3.4)

ds™

For n = 1 this formula follows from the theorem of derivative inside the integral.
The general case follows by induction.
Example 1.2 :

n dr 1 n!

2. If f(x) =sin(z) and f(z) = cos(z), we get

. d b 2bs
L (xsin(bx)) (s) = S EEN T RS
d s 52 — b2 1 20°

L (z cos(bx)) (s) = Tdss2 b2 (2 + b2)2 T2t (s2 4 b2)2°
Theorem 1.12.

1. If f is continuously differentiable and f, f’ are of exponential order, then
L(f'(x))(s) = sL(f(x)) (s) — £(0).

2. If f € C" ' on [0, +00), f(™ is piecewise continuous on [0, 4+-0c) and f*)
are of exponential order for all 0 < k < n, then

LMY = " L(f)(s) = "1 £(0) = " 2f(0) — ... — F7D(0). (3.5)
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Proof .

1. We get this property by integration by parts:

£(f()) (s) Ama”mem=eﬂwuﬂ?+sAmf“ﬂmm

8/00 e f(x)dx — f(0).
0

2. We prove the formula by induction.

Corollary 1.13.
If f is continuously differentiable on [0, 400) and of exponential order, then

ﬁ(Azﬂﬂﬁ>®)=i£UX®-

1.1 Exercises

Find the Laplace transforms of the following functions and for each trans-
form give its appropriate domain:

fl@) = (2 +1)?

= ze® sin(x) 6
_ 2

= 2z cos*(z) 7) f(x) = e * cosh(2z).
= 651n(2:c) -5 COS(2£C)

)
)
8) e " sin(4x) cos(4x);
= (sinz — cosx)? 9) 65sin(8z) sin(2x);

2 Inverse Laplace Transform

Theorem 2.1.
Suppose f and g are continuous functions. If L(f)(s) = L(g)(s) for all s > a,
then f=g.

For the proof, we recall the Weierstrass theorem for approximation of con-
tinuous functions by sequence of polynomials.

Theorem 2.2. [Weierstrass Theorem]|
Let f: [a,b] — R be a continuous function, then there exists a sequence (f,,)n
of polynomials which converges uniformly on [a, b] to f.
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Proof .

We assume in the first case that a = —3,b =1 and f(—1) = f(3) = 0. In this
case the function f can be extended to a continuous function on R.

For all n € N, define P, (z) = ¢, (1 — z?)" and

—+oo

“+o0
fulz) = / F(0)Palz — y)dy = / f@— )Py, (36)

—o0 —o0
1
where ¢, is chosen such that / P,(z)dx = 1.
-1

Lemma 2.3.
The functions f,, defined by (3.6) are polynomials and the sequence (f,)n
11

converge uniformly to f on the interval [—3, 5].

Proof .
From the left side of the formula (3.6), f, is a polynomial. From the right side
of the formula (3.6), we have for |z| < 1

F(@) — fule) = / =Py (3.7)

Let € > 0, M the maximum of f on R and § > 0 such that |f(z)— f(z—y)| <e
if ly| < 0. It follows from (3.7) that

(@) — ful)] < /

ly|<d

eP(y)dy + / M Py (y)dy.
s<lyl<

We claim that lim P,(y)dy = 0.

notee Jeslyl<t
1 T
fo<r<l, — = / (1 —z*)"dx > / (1 —r?)"dz = 2r(1 — r?)". Thus
Cn -1 -
1

n < ————— and
“n = 2r(1 —r2)n an

1 1 (1 _52)11
P, dgi/ 1—82)dy = ~—9)
/5§|y51 (v)dy 2r(1 —r2)" _1( )hdy r(l1—r2)"

The result follows by taking r < ¢ and tends n to infinity.

Proof of the theorem

If f is zero outside the interval [—s,s|, the function F(x) = f(2sx) is zero
outside the interval [f%, %] From the previous lemma there exists a sequence
(fn)n of polynomials which converges uniformly to F' on the interval [—%7 %]
The sequence of polynomials g,(z) = f,(55) converges uniformly to f on the

interval [—s, s].
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If f is continuous on the interval [a,b]. Consider the function g(z) = f(x) —
b) — b— b
M(w—a), g(a) = f(a) = g(b) and the function h(z) = 5 Tt a—2&—
—a s
a bijection between [—s, s] and [a, b].
The function g o h is a uniform limit of sequence of polynomials. Then f also.
O

Corollary 2.4.

b
If f is a continuous function on an interval [a,b] and / f(z)x"™ = 0 for all
a

n € N, then f =0.

Proof .
There exists a sequence of polynomials (P,),, which converges uniformly to f

b
on the interval [a,b]. Then / f(z)P,(x)dz = 0 for all n € N. This implies

b
that / f*(z)dxr = 0. As f is continuous, f = 0.
a

Proof of theorem 2.1.
By linearity it is enough to prove that if £(f) =0 then f = 0.
Fors=a+n+1,

—t

+oo 1
[ et = [ - ma) e o
0 0

Then f = 0.

Definition 2.5.

If F is the Laplace transform of a piecewise continuous function f, then f is
called the inverse Laplace transform of F' and denoted by

F=L71(f).

The inverse Laplace transform is also linear. We have for example

L ((szjnz) _ %xsin(m), £ (M) _ %sin(x) _ %xcos(x).

Theorem 2.6.
Some Inverse Transforms
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1
L LY =)=1
)
,onb
—1 1 at
3. L7 )=e* neN
s—a
4. E_l(L) = sin(nt).
§2 4+ n?
Example 2.1 :

1 T
£t <2> = / sintdt =1 — cosx.
s(s2+4+1) 0

2.1 Exercises

—1 o 3

5 L (52 —|—n2) = cos(nt).
_ k

6. LN g—3) =
_ S

7. L 1(@) = COSh(TLt).

Find the inverse Laplace transform of the following functions.

s24+6s+9
V o o06-26+9
2) () = ;=3
3) fls) = 324—824;110
s$2 +4s—15
D16 = T T9)
4
5) f(s):m
0 160 = 510
NI =

NI = @D
10) £(5) = g

6—23
1) fs) = (52 +12s+ 32)

12) f(s) = (@)

7—3s
13) F = S
) Pl = G50
245
14) F =
) Fls) = =g
_ -3 s
15) F(S) = e sm
16) F(s) = s L
5)=¢ st 4+ 1652

3 The Heaviside’s Unit Step Function

Definition 3.1.

The Unit Step Function is defined to be H(z — a) =

0 0<zx<a
1 r>a

For a = 0, this function is called also the Heaviside function.
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Consider the function f(z) = sinz for > 7 and 0 otherwise. The expres-
sion of f in term of the Heaviside function is: f(z) = H(z — 7)sinz.
Also if f is the function defined by f(z) = e® for € [1,2). Then f(z) =
e’ (H(x — 1) — H(x — 2)).
Theorem 3.2. Second Shift Theorem
If f is piecewise continuous on [0, +00) and of exponential order, then for a > 0

L(f(z —a)H(z — a)) = e""L(f)(5)- (3.8)

—as

In particular, £ (H(z —a)) = ¢

S

Proof .

+o00
C(f(z—a)H(z —a) = / 5% f((x — ) H(z — a))da

0

+oo
= / e T f(x — a)dx

+oo
= e /0 e~ f(x)dx = e F(s).

O

Example 3.1 :

Using the Heaviside function write down the piecewise function that is 0 for
x <0, 2% for z in [0,1] and x for = > 1.

fz)=xH(z —1)+2*(H(z) — H(z — 1)).

Example 3.2 :

L1 (efzs) = 3@ (2 - 3).

s—3

3.1 Exercises

Find the Laplace transforms of the following functions:

0 0<z<1
1 z) =< - -
) f(@) {62"”, x> 1

mQ, 0<x<1
2) flz)=<5—2, 1l<x<2

6, 2<zx

0, <3
3) f(x)_{x2—6:z:+18, >3
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4) f(x) = 2°H(x — 3)

5) H(x —5)xe 57;

6) H(x — g)cos(Zx)7

7) H(z —3)(z? —z +4).

8) f(z)=(2x—2)(H(z)—H(xr—3))+ (10— 2z)(H(x —3) — H(z — 6))

4 Solutions of Linear Differential Equations

The previous results will be useful to find the Laplace transform for the func-
tions that are annihilated by a differential operator of constant coefficients.

We use the identity (3.5) to solve linear ordinary differential equations.
If

any(n) + anfly(n_l) +...+ apgy = g(t)

y(0) = yo,y (0) = y1,...,y™(0) = yn_1, where aj,y; are constants, for
0 < j <n—1. By the linearity property, the Laplace transform of this linear
combination is a linear combination of Laplace transforms:

anL(y™) + an_1 Ly D) + ..+ aol(y) = L(g(1))

Example 4.1 :
We wish to solve for y(z) the following equation 2? = / e'y(t)dt. We apply
0

the Laplace transform, we get

5 = LLley(@) = LY (s 1),

2
where Y (s) = L(y(z)). Thus Y(s —1) = 2 o Y (s) We use the

shifting property again y(z) = 2e™"x.

_ 2
(D

Example 4.2 :
Given y + a?y = 1, with y(0) = 0,3'(0) = 0,.
We take the Laplace transform of the equation, we get s*Y (s) + a®Y (s) =

1 1 1
F(s) = —. Then Y (s) = ————. Taking the inverse Laplace transform of
] s“+a*s
Y (s) we obtain
1 — cos(ax)
y@) = —3—

Example 4.3 :
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1. Let f(z) =sinx, "+ f=0. Then

£(F @)~ @) (5) = LT @) (5) ~ 1 L) 9)
We get L (sinx) (s) = ﬁ

2. Let y be a function such that y — 3y’ + 2y = ¢*, with y(0) = 1 and
Yy (0) = —1. If Y = L(y), then

Y — (s —1) = 3(sY —1) +2Y = S_%
and
Y= (sfl)l(sﬁ) * (8—81)—(54—2) - 331 - (sjl)2 - si?
= L(2e" — ze® — 7).
Example 4.4 :

Consider the following initial value problem

/

” ’ ™
y +7y +6y=2H(t— 5)sm%, y(0) =2,y (0) = 0.

(This equation can be interpreted as follows: If as mass of 1kg attached to a
spring with spring constant k = 6 such that the system has damping constant
¢ = 2. Assume that the mass is displaced 2m from equilibrium and released at

t = 0. Futhermore at time t = g7 the forcing function f(t) = 2sin®t is applied.

y(t) is the displacement of the mass from equilibrium.
Taking Laplace transforms, we get

s?Y () — sy(0) — y (0) + 7(sY (s) — y(0)) + 6Y (s) = e 53 (1 + 2

Then (5?4 7s +6)Y (s) = 25 + 14+ e~*5 (1 + 1) and

Hence
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Example 4.5 :
Consider the differential equation

y' + 3y = 13sin(2t), y(0) = 6.

We take the transform of each member of the differential equation: L(y') +

3L(y) = 13L(sin(2t)). Then sF(s) — 6 + 3F(s) = 6 + % Then F(s) =
s
6 26 8 2546 o L s
s+3+(5+3)(52+4)_5+3+ s24+4 andy = 6L (s+3) 2L (52+4)+

6L ( ) =8¢~ —2cos(2t) + 3sin(2t).

s24+4
Example 4.6 :
Consider the differential equation

y =3y +2y=et  y(0)=1,4'(0) =5

We take the transform of each member of the differential equation: E(y”) —
3L(y') +2L(y) = L(e ™).
s* 46549 16 25 1
Th F _ dy=—-=—2 t v 2t i —4t.
Pl = ooy YT T3 e T e

Example 4.7 :
Consider the initial value problem

y'+y +y=sin(z), y(0)=1, y(0)=-L
Let Y(s) = L (y(x)), we have
L(y)=sY(5)=y(0) = sY(s)-1, L(y")=sY(s)=sy(0)~y'(0) = sV (s)—s+1.
Taking Laplace transforms of the differential equation, we get

1

Then
S 1

32+s—|—1+(52+s+1)(52+1)'

Y(s) =
Finding the inverse Laplace transform.
yz) = LY (s)

- (w7m) 7 (o)
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Since
s _ s _ s+ % 1 §
Sl G HT (13749 VB (9
we have
o 3 1 e 3
£t (52+85+1> =e 2 COS(%.’E) — %6_5 sin(%x).

Using partial fractions we have

1 s+1 s

(24+s+1)(s2+1) 24+s+1 241

Then

-1 1 _ -1 S -1 1 -1 S
£ ((s2+s+l)(32+1) =L s2+s+1 = $2+s+1 £ $2+1)°

Since

- 1 2 . . V3 _ s
c (arirn) = g g £ () =

we obtain

y(x) =22 005(73.’)3‘) — cos(x).

Example 4.8 :
Consider the initial value problem

y'+y +y=sin(t), y0)=1, y(0)=-1
Let Y(s) = L{y(t)}, we have
L{Y' (t)} = sY (s)=y(0) = sY (s)=1, L{y"(t)} = s*Y(s)=sy(0)~y'(0) = s*Y (s)—s+1.
Taking Laplace transforms of the differential equation, we get (s2+s+1)Y (s)—

1
— 1 and Y(s) = —° :
§ = gy, and Y(s) sl (s +s+1)(s*+1)

y) =L H{Y(s)} = L7 {52+85+1} +L7 { (s2 +s+11)(s2 + 1)}'
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Since

s B s S+% 1 %\/3
Pl GHDPTE 43RGV VBls+ 3P+ (3VE)

we have

Y ST W N G
L {82+5+1}—e 2 cos(2\/§m) \/ge 2 51n(2\/§ ).

Using partial fractions we have

1 As+ B Cs+ D

(s24+s+1)(s2+1) s2+4+s+1 s24+1°

Weget A=B=1,C =-1, D =0, so that

1 1 A s 1 1 a1 S
£ {(32+s+1)(32+1) =L $2+s+1 = $2+s+1 £ s2+1)"

Since
1 2 1 S
—1 _ — 5T —1 —
L {W}\/ge 2 51n(§\/§x), L {82+1}cos(x)
we obtain 1
y(z) = 2e 2“’(308(5\/3 x) — cos(x).
Example 4.9 :

Consider the differential equation
y =6y +9y =%, y(0) =2, y(0) =17.
We take the transform of each member of the differential equation:

25+5 2
o =G t soap

1, 2545 1 2(s=3)+11
S e T
) S, 1
= 2L (W)Hw 1((8_3>3)

= 2¢%% 4 11ze®®.
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1
y = 2e3 + llazegxﬁafle‘?’m.

Example 4.10 :
Consider the differential equation

y' (@) +y(x) = f(x), y(0)=0, y'(0)=0,

where f(z) =11if x € [1,2) and zero otherwise.
The function f(x) = H(x — 1) — H(xz — 2). Taking the Laplace transform, we
get:

-5 —2s
9 e e
Y Y(s)= -
PY ()4 ()= - &
Solving this equation, we obtain
e~ 5 6723
Y = - .
() s(s2+1) s(s2+1)
Then )
-1 3(524‘1)> =1—cosx. Then using Lemma (??) and Theorem (3.2),
we get L1 (qf?i:rn) =LY (e L —cosx)) = (1 —cos(x — 1)) H(x — 1).

—2s

imilarly £ [ —S——
Similarly £ (s(s2+1)

2). Hence, the solution is
y(z) = (1 —cos(z — 1)) H(t — 1) — (1 — cos(z — 2)) H(t — 2).
Example 4.11 :

Solve the following differential equation: ¢’ — 2y = f(x), with y(0) =3, f(x) =
3cosz for x > 1 and f(x) =0, for 0 <z < 1.

> =L (e L(1—cosz)) = (1—cos(z —2))H(z —

L(f(x)) = —Sfjle_s. Then sF(s) —3 —2F(s) = —Sfj e~ % and
1 3s 3 6 s 3 1
F = — s ) =_- 4 27 ms_Z__- =S,
() 5—2(3 ZH1° > s—2  52+1° 5 +1°
L1 532 = 3e%*,

y(r) = 3e** + gcos(x —1)H(x—1)— gsin(ac —1H(z—1).
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4.1 Exercises

Solve the following differential equations with and without using Laplace
transform
1) y +3y =e*, y(0) = -
2) y + 4y = sin(3z), y(0) =
3) y oy =, y(0) = -1
) y 9y =2,4(0)=0,y(0) =1
)
)y

=

5 y "4+ 9y = 5cos(3z), y(0) =0, y (0) =0

6) y +2y +y =3z, y(0)=0,y(0)=

Using Laplace transforms, solve the following differential equations.

16

1) y +y=e "+e’+cosx+sinz, y(0) =1
2) y —2y=>5+cosx + e** +e " y(0)=4
3) y +y=5H(x—1)4+e"H(x—1)+ H(z —1)cosz, y(0) =2
4) y +5y =120, y(0)=3
5) y 43y =e2, y(0)=—2
6) y —y=aH(x—-3), y(0)=—-4
7)y +9y =0, y(0)=0, y(0)=5
8y =0, y0)=2 y(0)=0
9)y +9y =2, y(0)=0, y(0)=1
10) y "+9y=5cosz, y(0)=0, y(0)=0
11) y "4y =sin(2z), y(0)=0, 3 (0)=1
12) y "9y = cos(2z) + xcos(2z), y(0)=0, 3 (0)=1
13) y 42y 4+ 5y =e *sin(2z), y(0)=0, ¢ (0)=1
14)y +2 +5y=H(x—4), y0)=1, y(0)=0
1)y —2 —3y=H@-3), y(0)=2 y(0)=0
)

y 42y +5y = e " sin(2x)+H (z—7)e " cos(2z), y(0) =0, 3 (0)=

17)y +y —2y=4e¢*+H(z—3), y0)=1, 5 (0)=0
18) y ‘42 +5y=H(z—2), y0)=1,4(0)=0

19) y T2 =3y =0,y(0)=4,4(0)=0

20) y + 4y + 13y = 2H (x — ) sin(3z), y(O)zl,y/(O)zo
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Use the Laplace transform to solve the initial-value problems

1) Yy +y=e"+e +cosz + sin, y(0) = 1;

2) y —2y=>5+4cosx+ e+ y(0) =4

3) ¥y =2y +2y=cosz, y(0)=1,5(0)=—1;

4) y +y=5H(x —1)+e*H(x —1)+ H(z — 1) cosz, y(0)=2.
5) v +2y +5y=H(x—2), y(0)=1y(0)=0;

6) v + 3y = 13sin(2z), y(0) =6.

Use the Laplace transform to solve the initial-value problems

1) y' +y=e*+e*+cosx+sinz, y(0)=1;

2) y —2y=>5+4cosz+eX +e y(0) =4

3) y — 2y + 2y = cosz, y(0) = Lyl(o) -1

)y +y=5H(w—1)+e"H(x 1)+ H(z —1)cosz, y(0) =2.
) 2 45y Ha-2). 0= 15 (0) =0

6) v’ + 3y = 13sin(2z), y(0) =6.

D 4+ 2y e, y(0) = 1Ly/(0) =5,

8) 4 — 6y +9y =223, y(0) =2, y/(0)=17.

9) o — 2y = f(x), with y(0) =3, fx) = {200 L21

10) ¥ +y' +y=sin(z), y(0)=1, ¢/'(0)=-1.

Using the Laplace transform to solve the following differential equations

(a)y +3y +2y=0, y(0)=a, y(0)=0b,

by +y +y=0. y(0)=a y(0)=b

(c) y 42 +y=0, y0)=a, y(0)=0b,

(d) y —|— y = H(z — 1) for initial conditions y(0) = 0 and y (0) = 0,
(e) y®) 4y = 23H (x — 1) for initial conditions y(0) = 1 and y (0) = 0,

y (0) =0,
(f y —y = (2% — 1)H (2 — 1) for initial conditions y(0)
/

) y'(0) =2
(g) v + 3y + 2y = —5sin(x) + 5cos(x), y(0) =5, y (0) = -3.
(h) ¥y’ +y =4H(x — ), with initial conditions y(0) = 2, ¥’(0) = 4.
(l)y =5y —6y=2"+7  y(0)=1, y'(0)=0

)

G) ¥ —2y +2y=cosz, y(0)=1,9(0)=-1
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(k) y/+y:5H(x—1)+ewH(:c—1 + H(x—1)cosz, y(0)=2
1)y +2 +5y=H(—-2), y0)=1,y(0)=0

(m) y'—2y = f(z), with y(0) = 3, f(z) = 3cosz for z > 1 and f(x) =0,
for0<z<1.

(n) y +2y +5y=Hx—-2), y0)=1,y(0)=0

—



4 Systems of Linear
First-Order Linear
Differential Equations

Introduction

In this chapter we give an introduction to systems of linear first-order differen-
tial equations. The general form of such system is

d
%X(t) =At)X(t) + F(), (4.1)
ara(t) aia(t) - ain(t)
t ’ ) El
(f) a21(t) axa(t) - aza(t)
where X (t) = : ,A() = . . . . and
e : : : :
Znt) tnr(t) analt) - annll)
fi(?)
f2(t)
F(t)= .
fa(t)
If FF =0, the system is called homogeneous, otherwise it is non-homogeneous.
Theorem 0.1.

The maximal solutions of the linear system (4.1) are global.

In which follows, we consider only the maximal solutions of the system and
then we do not precise the interval of the solutions.

Example 0.1 :

87
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Consider the system X'(£) — (583) — ((1) 21) (;8) 4 (;) .

This system is equivalent to

{x’(t) = x(t)+2y(t) +t
y'(t) = —ylt)+e

1 1
Then y(t) = ae™" + iet, with @ € R. Moreover /() = x(t) +ae™" + iet. Then
z(t) = (3t +b)e' + Ze~, with b € R.

Theorem 0.2. [Existence and Uniqueness Solution]

If the matrices A(t) and F(t) are continuous on an open interval I. Then for
all ¢y € I, there exists a unique solution of the initial value problem X'(t) =
A(t)X(t) + F(t) and X (tg) = Xo on the interval I.

Example 0.2 :
Consider a linear differential equation of second order:

y (1) + 2/ (t) — 3y(t) = e’ + cost.

This differential equation can be converted into a system of first order differ-

. . . [y , (0 1 0
ential equations by letting ¥ = (y') Then V' = <3 _2> Y + (et + cos t)'

Example 0.3 :
The equation y () — 3y’(t) + 2y(t) = sint can be written as system of first

order equations by letting Y = (y/) Then Y’/ = < 0 1) Y + (Si?l t>'

Y -2 3
/
_ ) Y1 = Y2
y1 =y and ys = y'. Thus vy = —2yi+3ys +sint’

1 Homogeneous Systems of Linear Differential
Equations

1.1 Superposition Principle

Theorem 1.1. [Superposition Principle]

If X1,...,X,, are solutions of the linear differential system X'(t) = A(t)X (¢)
on an interval I, then a1 X1 +...+a,,X,, is also solution of the linear differential
system on the interval 1.
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1.2 Linear Dependence and Linear Independence

Definition 1.2.

Let {Xi,...,X,,} be a set of vectors solutions of the linear system X'(t) =
A(t)X(t) on an interval I. This set is called linearly dependent, if there exist
constants cq, ..., ¢y, not all zero, such that

Cle (t) + ...+ CnLXm(t) = 0

for all ¢ € I. Otherwise, the set is called linearly independent.

Theorem 1.3.
z1(t) Tn,1(t)

Let X;(t) = : X () = : be n solutions of the linear
21,5 (t) T (1)

system X'(t) = A(t)X(¢t) on an interval I. Then the set {Xi,...,X,} of

solution vectors is linearly independent on I if and only if the Wronskian

xlvl .131,2 . 331771
€21 €22 N T2,n
W(Xy,...,X,) = : : : #£0,
Ipnl Tp2 .-+ Tpn
forallt e I.
Proof .
(]
Remark 10 :
x1,1(t) Tn,1(t)
If Xi(t) = e, Xn(t) = are n solutions of a linear
T1n(t) Ty (t)

differential system X' (t) = A(¢)X (t) on an interval I. Then the set X,..., X,
is linearly independent on I if and only if there exists ty € I such that the
Wronskian W (X1 (t), ..., Xn(to)) # 0.

Definition 1.4. [Fundamental Set of Solutions]

Any set of n linearly independent solution vectors of the homogeneous differ-
ential system X'(t) = A(¢t)X(¢) on an interval I is called a fundamental set of
solutions of the system on the interval I.

Theorem 1.5. [Existence of a Fundamental Set]

Let A be a continuous matrix function of order n on an interval I and consider
the linear differential system of differential equations X'(t) = A(t)X (¢). Then
there exists S = {X1,...,X,} a fundamental set of solutions of the differential
system. Moreover if X is a solution of the system, there exist ¢1,...,¢, € R
such that X =1 X1 + ... + ¢, Xn.
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1.3 Non-Homogeneous Systems of Linear Differential Equa-
tions

Theorem 1.6. Existence of Solutions
If the vector-valued functions A(t) and B(t) are continuous over an open inter-
val I that contains ¢y, then the initial value problem

{X’(t) AW X () + B(t),
X(to) = Xo

has an unique vector-values solution X (¢) that is defined on entire interval I
for any given initial value X, at tg.

Corollary 1.7.

If X, is a particular solution of the non-homogeneous system X' (t) = A(t) X (¢)+
F(t) on an interval I and X1, ..., X, is a fundamental set of solutions of the ho-
mogeneous differential system, then if X is a solution of the non-homogeneous
differential system on the interval I, there exist ¢y,...,¢, € R such that
X261X1+...+Can+Xp.

1.4 Exercises

/ 2 :
] t°x1 + 3txo + sint
Express the system {95/2 (sin £)ay + 2y + cost

in the matrix form X'(t) = A(t)X (¢) + F(t).

Transform the following differential equations into a system of differential
equations of first order

Consider the following system of first-order linear differential equations.
2 3
[
o2 3)x
Find the second-order linear differential equation that y satisfies.

Determine if the following functions are linearly independent y; = et,
Y2 = sint, y3 = sin(2t) on R.
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2 Homogeneous Linear Systems with Constant
Coefficients

In this section we limit ourselves to systems of constant real square matrices
of order 2.

2.1 Eigenvalues and Eigenvectors

Definition 2.1.

A real or complex number A is called an eigenvalue of a matrix A if there exists
a nonzero vector X such that AX = AX. The vector X is called an eigenvector
of the matrix A with respect to the eigenvalue .

If X is an eigenvector of a matrix A with respect to the eigenvalue A, then
(A—AI)X = 0. This will occur exactly when the determinant of (A — AI) is
zero. The polynomial g (t) = det(A—tI) is called the characteristic polynomial
of A.

Theorem 2.2.
The roots of the characteristic polynomial of the matrix A are the eigenvalues
of the matrix A.

2.2 Changing Coordinates

We consider a linear system X'(t) = AX(¢) and the change of coordinates
X =TY, where T is an invertible matrix. Then X is a solution of the system
X'(t) = AX(¢t) if and only if Y is a solution of the linear system system
Y/(t) =T 1ATY (t). Indeed: Y/ =T 'X' =T"1AX = T LATY.

We have three cases of type of eigenvalues of the matrix:

2.3 Distinct Real Eigenvalues

Theorem 2.3.

If the discriminant A,, = (a+d)?—4bc > 0, there is two different reals numbers
A1 and A such that g4 (A1) = ga(A2) = 0 and there exist two eigenvectors X
and X5 with respect to A\; and Ay respectively such that:

X7 and X5 are linearly independent and there exists an invertible matrix P

such that P71AP = D, where D = ()(\)1 )(\)) (We say that the matrix A is
2

diagonalizable.)

Proof .
If Xy 4+ bX2 = 0, by applying A, we get ar1 X7 + bA2Xo = 0. Hence a(A —
A2) X1 =0. As X; # 0 and Ay # Ay, then a =0 and b = 0.
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Consider the matrix P defined by: X; is its first column and X5 is its second
column. The matrix P is invertible and AP is the matrix with first column
A1X1 and second column A X5. Then P~'AP = D. |

Theorem 2.4.

Consider a linear system X'(t) = AX(t), such that the matrix A has two
different eigenvalues \; and As. If X1, Xo are two corresponding eigenvectors
of A with respect to Ay and A respectively. Then The set of solutions of the
system X' = AX is

{X = aeM'X) +be*' Xy,  a,b€ R},

Proof .

There is an invertible matrix P such that P"'AP = D, where D = (/})1 )(\) ) .
1

Consider the vector Y = P~1X. We have Y/ = P71X' = P~ 1APP1X =
DY. Y = (yl(t)>, then ,(£) = Ay () and gh(t) = Asya(t) and gy (£) =

ya(t)
aet, yo(t) = be*2t. Hence X (t) = PY () = ae** X, + be*?' Xy, O
Example 2.1 :
Consider the system X' = AX with A = <g :3)
ga(A) = (A +1)(A — 2). The vector X; = (;) is an eigenvector of A with
respect to A = —1 and the vector Xo = ? is an eigenvector of A with
respect to A = —2. The solution of the system is

X =ae "X, +be?' Xy, a,beR.

Example 2.2 :
Consider the system of linear differential equation X’ = AX, with X (0) = (})
—-10 -6 L . . .
and A = 18 11 The characteristic function of the matrix A is
—-10—-X -6
ga(\) = ’ 18 11/\’—()\—2)(1—1—)\).

Then the matrix is diagonalizable. The vector X; = (;) is an eigenvector

of the matrix A relative to the eigenvalue A = —1 and the vector Xy = <_12>
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is an eigenvector of the matrix A relative to the eigenvalue A = 2. Then the
6t — 5e2t )

solution of the linear system is X = —3e ' X; — 5e?' X, = (—Qet 4 1062t

Example 2.3 :

Consider the matrix A = (_21 _21> A=1, X = G) A2 =3, Xo = (_11>

The general solution of the system of linear differential equation X' = AX is

aet + be3

X = aetXl + bethQ = (aet _ b€3t

), a,beR.

If Xo=X(0) = <_11> then a =2, b= —7% and

2t — Le3t
X = (Qet + ze?’t)
2.4 Repeated Eigenvalues

Theorem 2.5.
If the discriminant A,, = (a + d)? —4bc = 0 and A # tI, there exist A € R
such that ga(t) = (t — A\)2. We have the following: There exists an invertible

matrix P such that P~1AP = (6\ i\)

Theorem 2.6.

Consider a matrix A which has a unique real eigenvalue A but A # M. Let
X5 € R? such that (A — M\)X2 # 0 and X; = (A — AI)X5. Then the general
solution for the linear first order differential equation X’ = AX is given by:

X = (at+ b)e’\tXl + aeM Xy = beM Xy + a(te)‘tXl + e’\th), a,beR.

Example 2.4 :
Consider the system X’ = AX, with A = i :i )
q,4(>\) = ()\+3)2 X1 = (j) and X2 = ((])-> AXl = 73X1 and AX2 =

X7 — 3X5. The solutions of the system are

X = (at +b)e ¥ X, +ae Xy, a,beR.

Example 2.5 :
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Consider the system of linear differential equation X’ = AX, with X (0) = (;)
5 4

andA:<_4 _3

). The characteristic equation of the matrix A is

5—A 4
qA()\):‘ 4 3)\‘=<1—)\)2.

Then the matrix is not diagonalizable. Let X, = (_11>, (A-DNX, = X; =

(é) The solution of the system is

X = 36tX1 - 2€t(tX1 + XQ)

Example 2.6 :

Consider the matrix A = (3 —2

9 _1). A = 1 is the unique eigenvalue of the

matrix.
If X2 = (é), then X1 = (A — I)XQ = (;)

The general solution of the system of linear differential equation X' = AX is

2at +2b+a
_ t ty .t
X—(at+b)eX1+an2—e< %t + 2b ), a,beR

If Xo = X(0) = <11) then a =2, b= —1 and

(a1
X =e <4t N 1> .
2.5 Complex Eigenvalues

Theorem 2.7.

If the discriminant A,, = (a + d)? — 4bc < 0, there exist a € R, 8 € R* such
that A = o+ 18 and X are zeros of the characteristic polynomial g4. There
exist also two eigenvectors X and X with respect to A and X respectively and

there exists an invertible matrix P such that P~ AP = (_aﬁ g)

Proof . o
We have AX = AX and AX = )\X. If X = X; +1X5, we get:

AXl = OéXl —ﬁXg
AX2 = ﬂXl +OéX2 ’
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Consider the matrix P With first column X; and second column X,. P is

invertible and AP = P ﬂ O
_ 5 @

Theorem 2.8.

Consider a matrix A of order 2 and has two non real eigenvalues \y = o + i
and \; = a—1i8, 8 #0.

If X = X; +iXy is an eigenvector with respect to the eigenvalue A; then
Xo = X; —iXy is an eigenvector with respect to the eigenvalue \;. Then

{e*(cos(Bt) X1 — sin(Bt) Xz), e (sin(Bt) X1 + cos(Bt)X2)}

is a fundamental system of solutions of the system X' = AX.

Proof .
Consider the matrix P With first column X; and second column X,. P is
invertible and AP = P ﬂ
,5 @
IfY =P 1'X,thenY' =P 'X' =P 'APP !X =HY. fY = <Zlgg>, we
2
have
{3/1(15) =y + Bya(t) .
ya(t) = —Byr + aya(t)
_ ,—at
Consider the vector Z = e~ Y = (2 EB _ Zfatz; Eg)
A(t) = Bzl { 2 () = —Fu()
We get {1 and .
& {Zé(f = —Ba®) M \H0) = B
Hence z1(t) = acos(ft) + bsin(5t) and z2(t) = bceos(St) — asin(ft). Then
t

2~

y1(t) = e (acos(Bt) + bsin(ft)) and ya(t) = e** (beos(Bt) — asin(Bt)).

X = PY=yX1+yX>
= ™ (acos(Bt) + bsin(Bt)) X1 + e (beos(Bt) — asin(Bt)) Xz
ae™ (cos(Bt) X1 — sin(Bt) Xz) + be®" (sin(Bt) X1 + cos(Bt) Xz) .

t
Example 2.7 :
Consider the system X' = AX with A = (:il)) _25>
ga(A) = _3_; A _52_ )\‘ = (A+4)2+1. Then A = —4 =i are the eigenvalues

. -2\ . . .
of the matrix A. The vector X = (1 B i) is an eigenvector of the matrix
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relative to the eigenvalue A = —4 +1i.
The general solution of the system is X = cje™* (X cos(t) — Xosin(t)) +

coe™ (X sin(t) — Xz cos(t)), where X; = (12) and X = (01)

Example 2.8 :

Consider the matrix A = ( 2 1

_1 2). A1 =241, Ag =2 —1i are the eigenvalues

of the matrix .

If X1 = (}), then AX1 = Ale.

1 0
0 1

The general solution of the system of linear differential equation X' = AX is

In this case V5 = and V, =

X = ae?(costVi—sintVy)+be? (sin tVi+cos tVs)

_ 2 acost—l—bS}nt @ bR
bcost —asint

If Xo=X(0) = (_11> thena=1,b=—1 and

ot [ cost—sint
X=e <—cost—sint>'
2.6 First-Order Non-Homogeneous Systems

Now consider the non-homogeneous system: X'(¢t) = AX(¢) + B(t). Suppose
X,(t) is a particular solution of the non-homogeneous system and X (¢) is any
other solution. Then Y (¢) = X (¢) — X,,(¢) satisfies the corresponding homoge-
neous equation Y'(t) = AY (¢). We these facts are in the next theorem:

Theorem 2.9.

Consider a non-homogeneous system: X'(t) = AX(t) + B(t). If {X1, X2} is
a fundamental system of solutions of the homogeneous linear system X'(t) =
AX(t) and if X,(¢) is a particular solution of the non-homogeneous system,
then the set of solutions of the non-homogeneous system is

S ={X,+aX; +bX,:a,beR]}.

The particular solution of the non-homogeneous system can be found by
the variation of constants. If {¥7,Y5} is a fundamental system of solutions
of the homogeneous linear system X'(t) = AX(t), the solutions of the non-
homogeneous system can be written in the form X (t) = Uy (¢)Y1(¢)+Us(t)Ya(t),
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where U; and U, are continuously differentiable functions on the interval I.
This is because the matrix W (¢) with columns Y; and Y5 is invertible for all
t € I. (The determinant of the matrix W is the Wronskian of ¥; and Ya.

Example 2.9 :
Consider the non-homogeneous linear system of differential equations

et ) 2 -1
:AX+<Cost) with A = (_1 2).

The set {Y; = ¢! VYo =3t (_11>} is a fundamental set of solutions of the

1
1
homogeneous system. Taking the change of constants method X = UY; + VY5,

U’e*—H/’ 3t _ et t 1 e
we get: {U’et SVt — cost Therefore U = a + 3 + 1¢ (sint — cost),
1 1
V= e 2 ¢ *(3cost —sint).
aet + bedt + 2t4let — %Ocost—kfsmt
= ;a,b e R
2t+1 ot 3
aet — be3t 5cost+ﬁsmt
11
If Xg= thena—i,b:—and
10
%et + %e& + 2t4 Lot _ Tlocost—i— Lsint
X —
iet — %(1) 3t 4 2t+1et cost+ f—osint

Example 2.10 :
Consider the non-homogeneous linear system of differential equations

t
; e (3 =2
X' =AX + (cos t) where A = (2 _1>.

Consider Xy = (é) and X1 =(A—-1)X, = (3)

(Ut V)X + Uel Xy = ¢! <2Ut+2V+U>

2Ut + 2V
Ut + 2V +2U" = 1
20"t + 2V = e tcost

1 1 1 1 1
U= a—i—it—l—ze_t(cost—sint), V= b—th—l—Zte_t(sint—cost)—&—ie_t(Qsint—
cost)

(2at +a +2b + 112 + Lt)e’ + (3sint — cost)

(2at + 2b + 1t2)e! + 1(2sint — cost)
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1
If Xo=X(0)= <11),thena: %,b:—z and

(4t + 3 + Lt%)e! + 1(3sint — cost)
X =
(Lt — 1+ 3t?)e' + £ (3sint — cost)

Example 2.11 :
Consider the non-homogeneous linear system of differential equations
t
X' = AX + N where A = 2 1.)\1:2—|—i,)\2:2—iarethe
cost -1 2
eigenvalues of the matrix.

The vector X; = (}) is an eigenvector of the matrix A with respect to the
. . 1 0
eigenvalue \1: AX; = A1 X;. In this case V; = 0 and Vo = .

1
Let
Ucost+ Vsint
ot
X=e (Vcost— Usint)

U'cost+ V'sint = et
—U’sint+ V'cost = e cost

1 1
U= ie_t(sint —cost) + ge_zt(cos(Qt) + sin(2t))

1 1 1
V= ie_t(— cost +sint) — 16_% + %e_zt(—Q cos(2t) + sin(2t))

The general solution of the non-homogeneous system is

acost+bsint — Je~t 4+ Le~(cost —sint)

X =¢* , a,beR.
beost —asint — Je~' 4 fe~*(sint — 2 cost)
It Xp = X(0) = ( L) thena=1 b=—1 and
0 =X(0)= _q ) thena =<, =-jan
Lcost— fsint — Le ' + fe7*(cost —sint)
X =€
—gcost— Lsint — Le7" + Le7?!(sint — 2cost)

2.7 Exercises

Solve the following linear systems of differential equations X' = AX,
where
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(a) A= (25 710) (b) 4= (_g g) (e) 4= (f _44>
Solve the following system of linear differential equations X’ = AX + B,
with A = (411 _;) and B = (ee;’t).
Solve the following system of linear differential equations X’ = (le :3) X,
X(0)=(-2 1).
Solve the following system of linear differential equations X’ = (_4 _2) X+

3 1
s xo=(5)

Solve the following system of linear differential equations
o= T2ty 2(0) =1, y(0) = 2
& = -2 ’ '

Use Laplace transforms to solve each non-homogeneous linear system.

, (1 3 5e 53t _ (10

(a) X'= (2 —4 X + _66731‘, ’ X(O) - 3 .
, (2 1 -1 (1

(b)X_<_1 2X—i— 8 , X(0) = 1)
, (3 0 —4sin(2t) (2

(o) X7 = (5 o) X cos2r) ) XO =12 )
, (2 =8 3t+1 (0

(d)X_<1 4 X+ —6t—9 , X(0) = 1)

Solve the following initial linear systems of differential equations

(a) X' = (25 170) X, X(0) = (-2 1)

(b) X' = (‘11 _}) X, X(0) = (—4 2)

(c) X' = (‘3 8) X, X0)=(5 -2
(d) X' = G ;‘) X, X(0)=(0 3)



100

@x=(T )% x0=(g)

2 —y'+x—4y=0
' +y = cost

—
=
DN

3 The Laplace Transform Method for Solving
Systems of Linear Differential Equations

The method of Laplace transforms, in addition to solving individual linear
differential equations, can also be used to solve systems of linear differential
equations.

Example 3.1 :
Pt = at) - y(t)
() = alt)+ )
Using Laplace transform, with X = L(z) and Y =Y, we get:

sX(s)—2 = X(s)—Y(s)
{SY(S) -1 = X(s)+Y(s)

Consider the system of linear differential equations: {

(s

This system is equivalent to the following: { (5
) =

25—3  2(s—1)—1

—Di4+1 (s—1)141
Taking the Laplace inverse operator, we get

)X(s)+Y(s) = 2
+(s—=1Y(s

)
Then X (s) = s=D+2
+1

and Y(s

z(t) = e"(2cos(t) —sin(t)), y(t) = e'(cos(t) + 2sin(t)).

Example 3.2 :
-4 -2

3 1)XWlth

Consider the system of linear differential equations: X’ = (

X(0) = §> This system is rewritten into the explicit form as follows:

{;U’(t) = —da(t) — 2y(¥)
y'(t) = 3z(t)+y)

{SX(S) —2 = —4X(s)—2Y(s) { (s+4)X(s)+2Y(s) =
)—3 = 3X(s)+Y(s) -3X(s)+(s—1)Y(s) = 3

. Using Laplace transform, we get

[\
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2s — 8 10 12
Then X(s) = = — 4 an
() (s+1)(s+2) s+1 s+2
35+ 18 15 12
Y(s) = = - .
(s+1)(s+2) s+1 s+2
Taking the Laplace inverse operator, we get

d

z(t) = —10e " + 1272, y(t) = 15e~" — 12¢ 2L

3.1 Exercises

Use Laplace transform to solve the following differential systems

(a) X' = (‘34 ‘12) X+ (5;) with X(0) = @

¥ = 2r—y+eé B B
o) {3 2 A e w0 =130) =1
A— 20 +y + et B B
@ {0 2 T e 0 =L 0 =1
¥ = 2z—y+e B _
R A DR OB RIS
() X' = AX + ) where A= (2 72) and 2(0) =1, y(0) = —1
cost)’ 2 -1 ’ '
e _
(f) {g; B f”” ;Fyy, with the initial conditions z(0) = 1, y(0) = 2.
&y g
()
d
31: = —2x + Y,
Y
7 T —2y
with the initial conditions x(0) =1, y(0) = 2.
(h)
dx
? = —T+ 2ya
d—:: = 20+ y

with the initial conditions z(0) =1, y(0) = —1.



102

4 Systems of Linear Differential Equations of Higher
Order

4.1 Elimination Method

In this section we intend to solve the systems of linear differential equations
by the elimination method. We can treat systems of differential equations of
higher order. In which follows, we consider the linear differential operators
with constant coefficients Lj = 27;0 aij , which is a polynomial in D. These
operators commute i.e. LyL; = L;Lj. In which follows, we use some properties
of the operators Ly to solve the systems of linear differential equations of type:

Lix(t) 4+ Lay(t) = f(t)
{LBI(t)+L4y(t) = g(t)’ (4.2)

To solve this system, we use the following method, called the elimination
method. To eliminate x, we apply the operator L3 to first equation and L; to
the second equation, we get

(L3L2 — L1L4)y = L3f — ng

This equation is a linear differential equation with constant coefficients.

Example 4.1 :
Consider the following system of linear differentials equations
2 (t) +a(t) +y(t) = e
a(t) —y'(t) —yt) = €
This system is equivalent to
(D+a(t) +y(t) = e
a(t) = (D+1y(t) = €~

Apply (D + 1) to the second equation, we get: (D? + 2D + 2)y = e 3! — 3e2t.

3t

1 3
Hence y = e *(acost + bsint) + ge* - 1—06% and x = e (bcost — asint) —

2 5, Loy
56 + 106 .
Example 4.2 :

Consider the following system of linear differentials equations

{x” (t) =32 (t) +2z(t) +y'(t) —y(t) = ¢
2/ (t) — 3x(t) + v/ (t) + y(t) = cost
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This system is equivalent to
{(D —-1)(D-=2)z(t)+ (D -1)ylt) = €
(D —=3)x(t) + (D + 1)y(t) = cost’

Apply (D — 3) to the first equation and (D — 1)(D — 2) to the second
equation, we get:
(D —1)3y(t) = 2¢' + cost + 3sint.
Then y = (at® + bt* + ct + d)e' + Acost + Bsint and
z(t) = (' B3+ 2+ t+d)e' + A cost+B' sint+Ce®, where a’ = a, V' = 3a+b,
d =3a+2b+c,2d = 3a+2b+2c, 10A’ =2A+4B—-3,10B' = —4A+2B+1.

Example 4.3 :
Consider the following system of linear differentials equations

{ (6 +a(t) =y (1) +y(t) = e
z(t)+xt)+y (t)—y(t) =sint.”
The system has the operator form
{ (D* +1)z(t) + (1 — D)y(t) = €'
(D + 1)z(t) + (D* — 1)y(t) = sint.

Apply the operator D + 1 to the first equation and take the sum with the
second equation, we get (D + 1)(D? + 1)x(t) + (D + 1)z = 2¢’ + sint, hence

"

2 4z +22 + 2z =2¢" +sint. The general solution of this equation is
1
z(t) = ae™t 4+ beos(V/2t) + csin(v/2t) + ge - §(cost —sint).
Hence

!’ 5
y —y=2ae"t —bcosV2t — csin V2t — get
We solve this differential equation and find that

y(t) = (d - gt)et —ae '+ (b+ \/ic) cos V2t — (\/5() + ¢)sin Vot.

4.2 Exercises
Solve the following systems of differential equations:

W {y
Yy —y+x=sint.

r —3r +y +2r—-y=1t, , ,
b 0) =1,9(0) = 0,2'(0) = 1,4'(0) =
(){y+m—2x+y—s1nt 2(0) 9(0) »2(0) y'(0)

1.






5 Power Series Solutions of
Differential Equations

1 Power Series

1.1 Series Product

Definition 1.1.
Let (un)n and (v, ), be two sequences of real numbers. For n € N, we set

Cn = Zukvn,k. (5.1)
k=1

The series Z ¢y, is called the product of the two given series Z U, and Z Up-

n>1 n>1 n>1

The convergence of the series product depends of the nature of the con-

vergence the series. Consider for example the following series > -, %

This series is convergent and the product of this series with itself is the series
Y n>1 Cn, Where

e EDF R 1
C"_,;\/k+1\/n—k+1_( b ,;\/k+1\/n—k+1'

It is easy to prove that |c,| > 1, then the series )" -, ¢, is not convergent.
The following theorem affirms the existence of the series product under some
conditions.

Theorem 1.2.
Let (un)n and (v, ), be two sequences of real numbers.

105
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1. Assume that the series Z Uy, and Z v, are absolutely convergent. Then
n>1 n>1

the series Z cp is absolutely convergent and

B “+o0 +oo +oo
> en =0 un)O_ vn). (5.2)

2. Assume that the series Zun is absolutely convergent and the series
n>1
Z v, is convergent. Then the series Z ¢p is convergent and we have
n>1 n>1

(5.2).

Proof .
It suffices to proves 2). Define

n n n
An = E Uk Bn = E Uk, Cn = E Ck,
k=1 k=1 k=1

+oo —+oo +oo
A= E Unp, o= E |un,| and B = E Uy
n=1 n=1 n=1

Then . . .
Co=Y ¢;=Y By j=)Y uj(B,_j— B)+BA,.
j=1 j=1 j=1

Since lim,,— o, B.A,, = A.B, then to show that lim (), = A.B, it suffices

n—> 00

n
to prove that the sequence (A,,), converges to 0, where A,, = Z a;(Bn—;—B).
j=1

+oo
e
Let ¢ > 0: 3N € Nsuch that Vn > N; |B, — B| < & and %|aj| < oaf
j:

Then for all n > 2N,

N n
19 13
|An| <> lajl|Bu—j = Bl+ > la;||Bn_j — B| < st5=
j=1 j=N+1

E.

\V]

The result follows. O
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1.2 Power Series

Definition 1.3.
A power series centered at a € R is a series of functions Z an(x —a)"™, where
n>0

(an)n a sequence of real numbers.

In the classical analysis course, we prove that for any power series, there
exists R € [0,+o0] such that the power series Zan(x — a)” is absolutely

n>0

convergent on the interval (¢ — R,a + R) if R > 0, convergent at {a} if R=0
and divergent for x such that |z — a] > R. This number R is called the

. . . Qp . .
radius of convergence of the power series. Moreover, R = lim Q, if this
n=00 |api1
1

limit exists. Also R = —————— if this limit exists and in general,
limy, o0 |an|1/n
1
En—)oolanp/n )

Theorem 1.4.

—+o0
Consider a power series Z an(x —a)™ with radius of convergence R > 0, then
n>0
—+oo
the function f(x Z an(z—a)™ is differentiable on the interval (a— R, a+R),
n=0

+oo
"(z) = Z nan(r —a)"" ! and

+oo
/ f 2% (ZL' _ a)n+1 — Z An—1 (l’ o a)n.

Corollary 1.5.

+oo
Consider a power series Z an(z — a)™ with radius of convergence R > 0, then
n>0
the function f(x Zan (x —a)" is CT> on the interval (a — R,a + R),
f TL

f(a) =ap and a,, = (a), for all n € N.

n!

Example 1.1 :
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1 X
T2~ Z z", |z| < 1. By integration, we get:
n=0

+oo n+1

In(l+2) = (~1)" (S+ o
n=0

+oo I.n+1

In(1l — x) :f;)m,

too ontl
_ 1 14+ T
tanh 'z = =1 = -
ani 2n(1—x> Z(2n+1)’

n=0
“+oo

1
— Z(_l)nx%z and

1+ 22

n=0
) too p2n+l
tan™ " x = -
nzz;)( )(2n+1)
1 1—x =X .
1+$+x2=1_$3:(1—x)2x for |z| < 1.
oo
T

ex:Zﬁ’ x eR.

n=0

n=0

+oo 1

: _ 2n+1
Slnhx_z;)i(QTL#»l)!x ) z e R.

400 1

coshz = —— ", z € R.

Z (2n)!

Theorem 1.6.

Let Z apxr” and Z b,x™ two power series with radius of convergence R; and
n>0 n>0

R; respectively. Then for |z| < min(Ry, Rs):

+o0 +o0 +oo
Z cpr’t = <Z anx"> (Z bnx”>
n=0 n=0 n=0

n=0

n
where ¢, = E arpbn_k.
k=0
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Theorem 1.7.
Let f(x Zan (x —a)" for |x —a| < R, then f is analytic on (a — R,a + R)
n=0

and for all c € (a— R,a+ R), Zb "forall |z —c/ < R—]a—¢,
(n)

where b,, = / (c)
n!

Example 1.2 :

The functions 1 , tan~1(x) are analytic on the interval (—1,1). For |z| < 1,
—x

1 +00 1 400 ) L +00 x2n+l
=3 =3 ()72 and tan~(z) = 3 (=1)"
=S = S ) = S
n=0 n=0 n=0

Definition 1.8.

A function f: I — R is called analytic at a € I if there is r > 0 which depends
—+o0

on a such that f(z Zanac—a)“ forallz € (a—r,a+7r) C 1.

n=0
The point a is also called an ordinary point. The largest such r (possibly

+00) is called the radius of convergence of the power series. The series
converges for every x with |z —a| < r and diverges for every x with |z —a| > r.
If f is not analytic at a, a is called a singular point for f.

The function f is called analytic on [ if it is analytic at each point a € I.

1.3 Exercises

mr "

1-1| (a) Compute the radius of convergence of the power series E sin( 3 —)—
n
n>1

(b) Compute the sum of the series.
Qn+t1 2n — A

Let A € R\2Z and (ay,),, a sequence such that ag # 0 and = T
an n

(a) Compute the radius of convergence R of the power series Z anx"”.

n>0
+o00
(b) Prove that the function f: x — Z anx™ verifies the différential

=0
equation and give a simple expressmn of f.

Develop the following function in power series
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(a) In(1 + ) (d) In(1 — 2z cos a + 2?),
1+z

(b) (881;11—11\)/25 (e) €** cos,

© O ==

(Hint: Prove that the function f(z) = (sin™'x)? verifies a differential
equation of order 2.)

2 Series Solutions of Differential Equations

Definition 2.1.
Consider the following linear differential equation

y' +C(z)y +D(x)y =0 (5.3)

A point a is called an ordinary point of the differential equation (5.3) if both
coefficients C(z) and D(z) are analytic at a. A point that is not an ordinary
point of (5.3) is called a singular point of the differential equation.

Example 2.1 :
For the following differential equation

(2% = 1)y + 2y + 6y =0

1 and —1 are the unique singular points.

Theorem 2.2. Existence of Power Series Solutions Theorem
If @ is an ordinary point of the differential equation

y' +C(x)y + D(x)y = 0.

there exist two linearly independent solutions as power series centered at a

+oo
y= Z an(z —a)”
n=0

These series converge on the interval (¢« — R,a + R), where R is the distance
from a to the closest singular point of the differential equation. (The singular
point can be a complex number).

Remark 11 :
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1. The series solutions can be analytic in an interval larger than the interval
of convergence of both functions C' and D.
For example, consider the differential equation

2
— =0
y R Pt

The functions y; = z—1 and y» = (1 —x)? are solutions of this differential
equation which are analytic on R but the coefficients of the differential
equation are analytic only on (—1,1).

2. If the power series of C' and D have different radius of convergence, then
the power series of the solutions is the smallest one of C and D.

Proof .
+oo +oo +oo
Let y = Zanx", y = Z(n + Dapp12”, y = Z(n + 1)(n + 2)ap 22",
n=0 n=0 n=0
+o0 +o0 +oo n
C= chm" and D = Zdnx”. Then Dy = Z (Z akdn_k> ",
n=0 n=0 n=0 \k=0
+oo n
Cy = Z (Z(k‘ + 1)a;€+1cnk> 2. Then y + Cy' + Dy = 0 if and only if
n=0 \k=0
1 n
Qpig = ———————— k+4+1agriCn—k + apd,— ) 5.4
+2 (TL+ 1)(n+ 2) Z(( ) k+1 k k k ( )

k=0

To find the two linearly independent solutions, take y; the unique solution of
the initial value problem : y“ +Cy + Dy =0, y(0) =1, ¢y (0) =0 and y, the
unique solution of the initial value problem : y + Cy’ + Dy = 0, y(0) = 0,
y'(0) = 1. The solutions y;,ys are linearly independent since the Wronskian
() %) _

y2(0)  wp(0)]

Remark 12 :
Consider the differential equation

y' + C(z)y + D(z)y = F().

If the functions C, D, F are analytic at ¢ with R the smallest radius of conver-
gence of the power series at a of these functions, the solutions of the differential
equation are analytic with radius of convergence at least equal to R.

Example 2.2 :
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Consider the following differential equation
(22 — 4z + 3)y + 2z’ + 6y = 0.

There is two linearly independent solutions of this differential equation as power
series centered at 1 with radius of convergence R = 2 and there is two linearly
independent solutions of this differential equation as power series centered at
3 with radius of convergence R = 2.

Example 2.3 :
Let f(z) = (1 + 2)® with « a real number, a ¢ N. For z €] — 1,1[; f'(z) =
a(l+ )1 then f satisfies the following differential equation

, o
- =0. 5.5
Y 1+xy (5.5)

The differential equation has an analytic solution Z an,x™ of radius of conver-
n>0
“+o0
gence at least 1. Let S = Z an,z” be a solution. We have:

n=0

+oo +oo
(1+x) Z napz" ' — a Z anx"™ = 0.
n=0 n=0

Then (n + 1)ant1 + na, — aa, = 0, which yields that a, 11 = %an, for all
n
ala=1)...(a—n)

n > 0. Then a, = ag and

23...(n+1)
= — a—n
S(x) = ao(1 + Z aa 1)n'( + l)x")

By the uniqueness of the solution of the differential equation

+oo

ala—1)... (e —n)
(l—x)o‘zz ", Vx| <1
oy (n+1)!
Foroz=*717

R B U - 5 ViTEo1 R e e O
' \/1—x_n:047<n)w’ ' te= +§nz::04”(n+l)(n>x ’

1 X (o ey, 1 =1 2 ,,
? 1+I_Z 4n (n)w’ 4 V1—z? 247"(7) o,



1 _ X (=D 20 o PR X1 2ny a2l
> \/1—&-727272:0 4n <n)x ’ 7. cos xii_n:047"<n)2n+1’
+oo 2n+41 +o0  1\n 2n+1
6. sin"lz= Z L (2n> gc , 8. sinh™lz = ) (2n) ac .
n:04" n/2n+1 = 4n n/2n+1
Example 2.4 :
Consider the differential equation (1 + 22)y — 6y = 0. Any solution of this
+oo
differential equation is analytic on the interval (—1,1). Consider y = Z apz”
n=0
a solution of this differential equation,
“+o00 +oo 00
y = Znanxnfl and v’ = Zn(n —1Da,z"? = Z(n +1)(n + 2)api22"
n=% n=2 n=0
and 2%y” = 3272 n(n — 1)a,z™. Then
+o0o
(14 z?)y" — 6y = Z [(n+2)(n—3)an + (n+1)(n+ 2)ani2] 2™ = 0.
n=0
n—3
It follows that: a,42 = —?an for all n € NU{0}.
n
We deduce that a5 = 0, ag,41 = 0 for all n > 2 and z + 22 is a solution of the
2n — 5 (=)™
differential equation. Also as, = — i (=1 ag-

o — 1720 T 20— 1)(2n - 3)
The general solution of the differential equation is

PRSP .
y=alr+zx n:0(2n_1)(2n_3)x , a, .

Example 2.5 :

Consider the differential equation y” — 2y = 0. The coefficients of this differen-
tial equation are analytic everywhere, in particular at 0. Any solution of this
differential equation is analytic everywhere.

+o00 —+o0 +oo
If y = Zan:v" is a solution, ' = Znanxnfl = Z(n + 1)a,412™ and
n=0 n=1 n=0
+o00 foo
Yy = Z n(n —1ap,z" 2% = Z(n +1)(n+ 2)an422™. Then
n=2 n=0
+oo

y' =2y = Z((n + 1) (n+2)ante — 2a,)z™ =0,

n=0



114

for all x € R. It follows that (n + 1)(n + 2)ap+2 = 2ay, for n > 0. Thus

2a
o = —————— Yn>0.
2 L Dnte)) T
2"a 2"a
We get as, = (Tn)ol’ Qon+t1 = (2”7"‘11)' and hence
2n 2n 2n 2n+1

ay .
Yy = ag Z ay Z @n T 1] = ag cosh(v/2z) + —= sinh(v/2z).

V2

Example 2.6 :
Consider the differential equation ¢ + zy = 0.

Ify = Z anx™ is a solution of the differential equation, then R = +oo is the

radius of convergence of this series.

+o0 too
y' = Z(n +2)(n+ 1)ayyoz™ and xy = Z ap—12". Then
n=0 n=1
., +o00 +oo
y +ay = Z(n +2)(n+ app22" + Z p—12"
n=0 n=1
+oo
= 2ay +Z((n+2)(n+ Dapto +nay + apn—1)x
n=1

Then az =0 and (n + 3)(n + 2)an43 +a, =0, Vn € N. By induction we get
a3nt+2 = 0 for n > 0 and

!
3n! o
A3n4+1 = a1 (B(n—k)—1)
(3n+1) o
“+o0
Hence y = agy1 + a1ys with y; = Z asnz®" and yy = Z agnp1 2L
n=0 =
Example 2.7 :
+oo
Consider a power series y = Z anx" solution of the differential equation.
n=0

y 4wy +y=0.
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“+o00 “+o00
y = Z napz" ' and y = Z n(n —1a,z" 2.
n=1 n=2
+oo 1
y +zy'+y = Z% ((n+1)(n+ 2)ant2 + na, + a,) 2", Thenapio = L
(—1)" (—1)"2mn!
Qop = ~———0g, QAopyl = ~———ay.
T g 0 T T ey Y
Then N
—+oo o0
(=D)" on 2 (=1)m2mn! 5,4
frnd frd 2 frng A —
n ; gl T T 2 ZB P

are independent solutions of the differential equation. y// +zy +y=0.

Example 2.8 :
+oo
Consider a power series y = Z anx" solution of this differential equation
n=0
(22 + 1)y +ay +y=0.
" +oo 1" +(x>
zy = Z na,z", %y = Z n(n—1a,z™ andy = Z(n+ (n+2)antoz™.
= n=0 n=0
1" +Oo
(@ + 1)y +ay +y= Z ((n+1)(n+2)ant2 + n(n — Da, + na, + a,) z™.
n=0
n? 41
Then Ap+2 = man, vn > 0.
An—12+1 a0 1o
W= Ty = 0 TT (4k? + 1),
“n = o 1) (2n) 2D T @) ;Eo( +1)
(2n—1)2+1 ay - 9
= 9y = ————— 2k —1 1
Gl = o) En £ 1) (2n+1)!]£[1(( 4
Then
+oo 1 n—1 +oo n
= 4k + 1)z = ((2k — 1)? Intl
0 =3 g L0+ 0, =3 Gl Tk =17 1

are independent solutions of the differential equation (22 + 1)y~ +ay +y=0.
Example 2.9 :
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+oo
Consider y = Z a,x™ a solution of the differential equation y” —zy = 0,
n=0
y(0) = a and ¥’ (0) = b, with ap = a, a; = b. We get api2 =

an—1
(n+1)(n+2)’
for n > 1 and as = 0. Then ag,4+2 =0 for all n > 0 and

agnzgiﬁ 3k — 2), a3n+1:3iﬁ 3k — 1).

Define the shifted factorial (a)g = 1, (a), = [[— é(a + k), m € N. Hence
the well known property of the Gamma function I'(x + 1) = 2I'(z), yields that
T
(a)n = (lt_‘z(Jr)n). The shifted factorial is also called the Pochhammer symbol.
a
Then .
a 3"a 17,1 3" T'(n+ 1)
ag = = [[ k-2 = 22 [[ (& + 4y = 202t ts)
| | | 1
3n! P 3n! o 3 3nl T'(3)
n n—1 2
b b3 2 3"bL(n+ %)
3nl % nt - 3 3n! T'(35)
Then N
X 3" T(n+3) 4,
b= Z 3nl T(1 a’
n=0 n (g)
and

Yo = Jf 3t s) %)xB”“
— 3n! F(%)

are independent solutions of the differential equation 3y — zy = 0.

Example 2.10 :

Consider the following differential equation y” +ay —xy =0.
—+oo

Lety = Z anx™ be a solution of the differential equation. This series converges
=0
" +o00 +oo 400
on R. ay’ = Z napz”, y = Z(n +2)(n + Daptoz™ and zy = Z ap—12".
n=0 n=0 n=1

Then az =0 and (n+ 3)(n + 2)ants + (n+ 1)apy1 —ap =0, for all n € N.
Define by = a1 + ag and b, = (n+ 1)ap41 + an + an—1, for all n € N.
(n+1)bpy1 =(n+ )(n —|— 2ant2 + (n+ a1 + (n+ 1)a, = b,. We deduce

that b,, = o + “ and Z bpz™ = (ag + a1)e” on R. Moreover
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+oo +oo
S bz = 3 (0 + Dang1 +an +an 1) 2" = ' (z) + (2 + 1y(z). Then y is
n=0

n=0
also a solution of the differential equation

y'() + (2 + Dy(z) = (a0 + ar)e”.
22 T2
The solutions of this linear differential equation are y = e= 7% (a+b / ez T2 dt).
0

Example 2.11 :
Consider the following differential equation y + 22y = 0.

“+oo
Let y = Z a,x™ be a solution of this differential equation. This series con-
=0
" +oo +oo
verges on R. y = Z(n + 1)(n + 2)ani22™ and 2%y = Zan,gx". Then
n=0 n=2
as=a3=0and (n+1)(n+2)ant2 + an—2 =0, for all n > 2.
Ay(n—1) ()" & 1
We get agn, = — = ,forall n > 1,
¢ 8 dn(dn—1)  4mnl ,}:[14/%—1"0 oratn=

D" 7 1
qnt1 = H ai, for all n > 1 and agni2 = a4nys = 0, for all

nml
4np! P 4k +1
n > 0.
Then
+oo n
_ (_1)n 1 4n
m=1+> ol =
n=1 k=1
and N
_ = (_1)n - 1 An+1
we=at) o]l A+1”
n=1 k=1

are independent solutions of the differential equation y” + 2%y = 0.

Example 2.12 : [Hermite’s Equation]
Consider the following differential equation

y —2zy + 2azy =0, a > 0.

+oo
Let y = Zanx" be a solution of this differential equation. This series

n=0
converges on R.
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+oo —+00 400
ry = Znan$n7 y” = Z(n +2)(n + 1)ayq22™ and 2azy = ZZaan_lx”.
n=0 n=0 n=1
Then
(n+1)(n+2)apt2 = 2(n — a)an, Vn > 0.
g L Xl-1-5) (T4 )
T omn—1) P0TY T 20 — (n—1))°
and 22 _ 1 _a -1 7122n+1r 1 a
— (’I’L 2 2) o ( ) (2 + 2)
Won+1 = —(7 75 5 d2n—1 = ai.
2n(2n + 1) 2n+1)I0(§ - (n—1))
Then .
o~ (=nr@r 2
=T(1+ = n
m=T0+ 2); Il(2 — (n—1))"
and .
1 a, (*1)n(2)2n+1 2n+1
Y2 = F(§ + 5) Z T

@n+1)I0(% —n+1)

n=0
are independent solutions of the Hermite’s differential equation.

Example 2.13 : [Chebyshev’s Equation]
Consider the following differential equation

/

(1—2?)y —ay +ad?y =0, a > 0.
—+o0
Let y = Zanwn be a solution of this differential equation. This series
=0
" —+oo —+oo
converges on (—1,1). ay’ = Znanx", y' = Z(n + 1)(n + 2)apy22™ and
n=0 n=0
—+oo
22y’ = Z n(n — 1)apz™. Then
n=0
n? —a?
an+42 = (n T 1)<n i 2) an,

_4(n—1)?—a? 1 e 5 9
a2n = mﬂ@(nfl) = % H(4k‘ —a ) ap

2n —1)% — a? 1 ot 5 o
Agn+1 = <(2n)(27)1+1)a2”1 et (H((2k+ )" —a )) ar.



Then
+oo /n—1 $2n
_ 2 oy T
n=ie & ([l -) 5
and
too /n—1 ) ) m2n+1
=+ 2% +1)2 — A

are independent solutions of the Chebyshev’s differential equation.

119
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2.1 Exercises

Consider the differential equation

z(z —4)y + (2 +2)y =2

“+o0
1) Find a power series Z anx™ solution of the differential equation.
n=0
2) Find the general solution for z € (—4,4) and deduce the value of
h f 11 +oo 1 +oo (n')2
t i : — = .
e following sum 7;) (2:) 7;) o]

Consider the differential equation
z(z —4)y + (2 +2)y =2

“+o0
1) Find a power series Z anx™ solution of the differential equation.
n=0
2) Find the general solution for z € (—4,4) and deduce the value of
“+o0
1 1?2
the following sum: Z (n)

2 T2

Find a power series Z anx™ solution of the following differential equa-

tions:

(a) (1+$ Yy +2zy — 2y =0,
(b) y —i—xy + 3y =0,
(c) 4xy +2y —y=0,

1

) 1—=x

(d) y' —ay =
(e) y +ay +y=cosz,

(f) 4oy’ — 2y + 922y = cosx,
(8) y —2zy +y=0.
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3 Series Solutions Near a Regular Singular Point
(Frobenius Method)

Definition 3.1.
A singular point a is called a regular singular point of the differential equation

y' +C(z)y +D(x)y =0 (5.6)

if the functions (x —a)C(x) and (x —a)?D(x) are both analytic at a. A singular
point that is not regular is said to be an irregular point of the equation. (i.e.
one or both of the functions (z — a)C(z) and (x — a)2D(z) fail to be analytic
at a.)

Example 3.1 :
Consider the following differential equation

(22 — 4)%y" + 3(z — 2)y' + 5y = 0.

For x # 42, this equation becomes y// +

3 , 5 _0
@-2)@+3p’ T Y
In this case 2 is a regular singular point and —2 is an irregular singular point.
Theorem 3.2. Frobenius’ Theorem
If a is a regular singular point of the differential equation (5.6), then there exist
two linearly independent solutions y; and yo such that:

1. either y1(z) = (x — a)™z1(x) and y2(z) = (z — a)™22(z), where z; are
analytic on the interval (—R, R) (and maybe in a larger interval) and
zj(a) # 0. The functions y; and y, are defined on the interval (a, R).

2. or 11 = r2 + N, where N is a non-negative integer, and y;(z) = (z —
a)" z1(z) and 2z2(x) = (x—a) ™ 22(x)+y1(z) In(z —a) where z; are analytic
on the interval (—R, R) (and maybe in a larger interval) and z;(a) # 0.
The functions y; and yo are defined on the interval (a, R).

Proof .
Without loss of generality we can, after possibly a change of variable x —a = ¢,
assume that ¢ = 0. The normalized differential equation

y' +Cla)y' + D)y =0, (z>0),

such that 2C(x) and 22D(z) are analytic at # = 0. A necessary and sufficient
condition for this is that

lim 2C(x) = o, lim 2°D(x) = dp
z—0 z—0
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exist and are finite. In this case

“+o0 +oo
= Z caz", x?D(z) = Z dpz"
n=0

n=0

and the given differential equation has the same solutions as the differential
equation B
2*y +a(xC(2))y + 2*D(z)y = 0.

This differential equation is an Euler differential equation if zC(x) = co,
2?D(z) = dy.

o0 oo
Ify=2a" (Z a,wc”) = Z anx"™t", with ag # 0 is a solution, we get
n=0 n=0

+oo

Q:Qy”(x) = Z(n +r)(n+r—Da,z™t"
n=0
—+oo n

22C(2)y (z) = Z (Z ck(n—Fk+ T)ank> Pl

n=0 \k=0

zzD(z Z <Z Ay — k) +r,

n=0

Then ag(r(r — 1) 4+ cor + dp) = 0 and
[(n+r)(n+r—1)—l—co(n—l—r)—I—do]an—i—z(ck(n—k‘—l—r)—i—dk)an_k =0
k=1
for all n € N. Since ag # 0, y is a solution if and only if:
F(r)y=r(r—1)4cr+dy=0 (5.7)
and

Fn+r)a, chn—k+7‘)+dk)an k- (5.8)
k=1

The polynomial F' is called the indicial polynomial of the differential equation
and the equation (5.7) is called the indicial equation of the differential equation.

Remark 13 :

1. The roots r1 and ro of the indicial polynomial can be complex numbers.
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2. If the roots r1 and rs of the indicial polynomial F' verifies Re(r; —r2) > 0,
then F(n+r1) # 0 for all n € N. Indeed F(n+71) = (n+71)? + (co —
D(n+m)+dy=n(n+2r +co—1) =n(n+ (r —r2)) # 0. Therefore
we can solve the recurrence relation

Fn+r)a, + Z (ck(n—k+r1)+dg)an—r=0
k=1

for a,, in terms of aq,...,an_1,cp and di, k = 1,...,n. Hence there exists
a solution
+oo
yp =z E apz"
n=0

of the differential equation (5.6). A second linearly independent solution
can then be found by reduction of order.

3. If F(n+1r) # 0 for all n € N, the recursion equation (5.8) can be solved.
Let a,(r) be the solution with ag(r) = 1 and define

y=y(z,r)=2a" (Z an(T)xn> .
n=0

Then, we have the following equality with two variables (z,r):
ny” + 220 (2)y' + 22D(x)y = 2" (r — r1)(r — o). (5.9)

3.1 First case 1: r; — 7y & (NU {0})

In this case, as mentioned in the previous remark, the recursive equation (5.8)
determines a,, uniquely for » = r1 and r = ry. For ag = 1, we obtain two
linearly independent solutions

yr=a" (Z an(r1)$n> , Yp=a? <Z an(h)mn) .
n=0

n=0

3.2 Second case 2: 71 = 7y

From the equality (5.9), we get
22y +22C(2)y + 2*D(x)y = 2" (r — r1)>.

Differentiating this equation with respect to r at r = r1, we get
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oy ay\' dy
2 (%Y 2 9 2 9% _
x (87") +x C(Z><87‘) +x D(I)ar 0.

We find that the second linearly independent solution

a o0 o0
Yo = a—i’(x, r1) = z"In(z) n;)an(rl)x” + ™ ngoa;l(rl)x”
= gy In(x) + 2™ Z al (ry)x",
n=0

where a/, (r) is the derivative of a, (r) with respect to r.

3.3 Third case 3: r{ — 1, = N € N
Let z(xz,7) = (r — ro)y(z, 7). From the equality (5.9), we have
222"+ 22C(2)2 + 22D(x)z = (r —r1)(r — ro)?a”.

Differentiating this equation with respect to r at r = ry, we get

92\ o2\’ Dz
2 (Y~ 2 hded 2 g
x (87’) +2°C(x) (8r> +x D(m)ﬁr 0.

. o z(x,r
Then the function y, = —gi (z,72) = lim 7( )
Ty T — To

differential equation. If b, (r) = (r — r2)a,(r), we have

is a solution of the given

n—1

F(n+1r)bu(r) + Z [(k+ 7r)en—k + dn—i]bi(r)
k=0

and

T—T2

y2 = lim <x’ In(z) Z by (r)a™ + " Z b’n(r)ac”> . (5.10)
n=0

n=0

This method is due to Frobenius and is called the Frobenius method.

Example 3.2 :
Consider the differential equation:

1" 1 1
y +@—g)y'+

L —o
2 y=

pre
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1
around z = 0. zC(x) =z — B and 2?D(z) = 3 = do.
The indicial equation of the differential equation is 272 — 37 +1 = 0. Then
1
r1 =1,r, = 1. Moreover, (n+7 — 5)(71—1—7“ —1)a, = —(m—147r)ap—1. Then

n

1
an(r) = ao(—1)" i
he1 k +7r— 5
= ()"
ylz\/EZ o " =+ze ™, >0

n=0 ’

and N
= (=Dr4ral
Yo Z @n T 1! , >0
n=0

are two linearly independent solutions of the differential equation.

Example 3.3 :
Consider the differential equation:

x(1 —a:)y” +(1-2)y —y=0

around z = 0. zC(z) =1 = ¢y and $2D( ) = f(lﬂ”—z)
co=1,¢, =0foralln>1. 22D(x) = ZJ A
The indicial equation of the differential equatlon isr2=0. Then r; = ro = 0.

The recursive equation is: (n + r g Ap—k. Then a1 = ag and

_ 1

2 T

1+ (n+r—1)?
(n+r)?

“l4 (k+r—1)2
If we choose ag = 1 + 72, we have for all n € N, a,, = H W
,

k=1

forn>2, (n+r—1)%a,_1 =Y j_yan_k. Thena, = 1.

4o n

1+ (k47— 1)
y=a"(1+7r%) +a" ZH—J}"
n=1k=1 k‘+7’

For r = 0, we have the first solution
n

X1+ (k-1 ) 2 2
y11+Z<H+Ek))> 1+Z<Hol+k >(n!)2.

da, 14 1+ (k+r—1)2 z”: 2k+r—1)  2(k+r)
- 1+ (k+r—1)2 (k+r)2
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The second solution

+oo n—1 n
1 2 n
y2:y1lnx+27(n!)2 (H (1+k%) ) (Zk — ok 2)>x
n=0 k=1

k=1

Example 3.4 :
Consider the differential equation:

) +2 —y=0

around x = 0.

20 (x) =2 = ¢g and 2°D(x) = —x.

The indicial equation of the differential equation is r(r + 1) = 0. Then
rp = 0,72 = —1. Moreover, (n + r)(n + 7 + 1)a, = an—1. Then a,(r) =
n

1
11 r+R)r+k+1)"°

k=1
+oo n
<1+ZH r+ k) r+k+1) )

nlkl

The first solution is:

+oo
1
91227'2 ", = >0.
— (n1)*(n+1)

Consider the function

+00
=(r+1y(z,r)=(r+ 1)z <1+ZH r+k)( r+k+1) ">

nlkl

0z

= (-1
Y2 5, (1)
e+ L1 f ! +22 x>0
= nr+-—|1- —_ | —= .
u x niln'(n—l
Example 3.5 :

The differential equation 2zy” + ¢’ + 2xy = 0 has a regular singular point at

x = 0 since zC(z) = § and z2D(z) = 2. The indicial equation is

r(r—l)—i—%r:r(r— =).
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The roots are r; = % r9 = 0 which do not differ by an integer. We have
(r+1)(r+35a = 0,
(n+r)(n+r— %)an = —@,_2 formn>2,
so that a,, = —2 n—2 for n > 2. Hence agpy1 = 0 for n > 0

(n+r)(2n+2r—1)
2

and ag, = — 2(n—1)-

(2n +7)(4n + 2r — 1)a
Setting, r = % and r =0, ap = 1, we get

—+oo
xQn

+oo 2n
A
Z/1=\/§§ e = T R yzZE T AL 1\
ol Ty (4K + 1) Ll [Ty (4k — 1)

The infinite series have an infinite radius of convergence since z = 0 is the only
singular point of the differential equation.

Example 3.6 :
The differential equation xy” + 9’ + 1y = 0 has a regular singular point at z = 0
with 2C(x) = 1, 2D(x) = x. The indicial equation is

rir—=1)+r=7r2=0.
This equation has only one root © = 0. The recursion equation is

(n+ T)Qan =—ap_1, n>1.

1)
The solution with ag = 1 is a,(r) = Y j_ 2))2 e For r = 0,

we have the first solution

+o00 o
Y1 = ;(—l)nw~

Taking the logarithmic derivative of a,(r) with respect to r we get:

d _an(r)
o In(a,(r)) = . Then

an(r)
a;(r)—<2+2+'“+ 2 )an(r).

r+1 r+2 r+n

1
En , where ¢, =1+ = + --- 4+ —. Therefore a second
(n!)? 2 n

linearly independent solution is

Then a,,(0) = 2(—1)"

Cn
y2 =y1In(z +22 z".
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The above series converge for all x. Any bounded solution of the given differ-
ential equation must be a scalar multiple of y;.

Example 3.7 : [Bessel’s Equation]
Consider the differential equation

22y +axy + (22— 1)y =0,
where v a non negative real number. This differential equation is known as the

Bessel’s equation of order v.

z = 0 is the unique regular singular point.
2

12 1
The Bessel’s equation can also be written y +—y'+(1— V—Q)y = 0. The indicial
x x

equation is r(r — 1) +r —v? = r?2 — % = 0 whose roots are 7 = v and ry = —v.

The recursion equations are [(1+1r)? —v?]a; =0, [(n+7r)* —v*]a, = —an_o,

for n > 2. The general solution of these equations is ag,+1 = 0 for n > 0 and
(=D™ao

azn(r) = (r+2—-v)(r+4—-v)---(r+2n—v)r+2+v)r+4+v) - (r+2n+v)

e If v is not an integer and v # 3, (v — (—v) # 0). There is two linearly
independent solutions of the Bessel’s equation J,(x), J_,(z) can be obtained
by taking r = +v and ag = = I'(v + 1). In this case,

_ (=1)"ao
C22ml(r + 1) (r+2) - (r+n)’

A2

For r = +v,
_S (Gt gy
Tr(@) _;::Onlf(r—kn—kl) (5) '

These functions are called Bessel functions of first kind of order v.

olfv=7g, Ji(z) = %sin(x), J_

2
1= Ecos(x).

e For m = 0, the first solution is

In this case, the indicial equation has a repeated root, the second solution is of
the form

y2 = Jo(w) In(z) + Y _ ap, (0)z*",
n=0

(=1)"
(r42)2(r+4)2--- (r+2n)?
aén(r):_2( 1 N 1 L 1 )

Aon r+2 r+4+4 .r—|—2n

. It follows that

where ag, (r) =
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1 1
so that a),(0) = (cn) a2,(0) = hypaz,(0), where ¢, =1+ gt Hence

o~ (=1)"h
y2 = Jo(z) In(z) + z% Wn!);x?n'
o If v = —m, with m € N, the first solution is
B > (_]_)’ﬂ (x)2n+m
Im(@) = Z nl(m +n)! \ 2 '

n=0

The second solution has the form
Yo = aJp(x) In(z) + Z b, (—m)a?"tm
n=0

where by, (1) = (r + m)agy, (r) and a = bay, (—m).

3.4 Exercises

3-1
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Solutions of Exercises on Chapter 1

v =+/|yl, y(0) = 0.
(v)? + (y)? = —1.

Since f is continuous, then f is C' and by iteration f is C° on R. More-
over by differentiation of the condition on f, we have f'(x) = f(z), then

f(z) = Ae®. The condition /x f(#®)dt +1 = f(x) yields that f(z) = e®.
0

y(z) = (1 — z)3 is a solution of the differential equation. However, this
solution is not unique. Consider for any ¢ > 1 the continuously differen-
tiable function

2-1

(1-2)3 for0<z<1,
y(x) = 0 forl1 <z <eg,
(c—x)? forz > ¢

is also a solution of the initial value problem. We can also take y = 0 for
all x > 1.

1)

oM ON
Let M = 22 +3y? and N = 2zy. Frae 2r = B The differential
€ Y
equation (x? 4 3y?)y’ 4+ 22y = 0 is exact.
or 2 oF 2 2 /
B = 2zy, then F = 2y + f(y) and 50 =% +3y° = 2zy + ' (y).
€ Y
Then f'(y) = 3y? and F(x,y) = xy? + y3. The set of solutions of
the differential equation (2 + 3y?)y’ + 22y = 0 is {(z,y) € R? :
rvy? +y3 =¢ ceRL
oM ON
Let M =2y + ze¥ and N = e¥. —— = e¥Y = ——. The differential
ox oy
equation (2y + ze)y’ + e¥ = 0 is exact.
F oF
e €Y, then F' = ze¥ + f(y) and i ze’ = ze’ + f'(y). Then
€z Y
f'(y) =0 and F(x,y) = xze¥. The set of solutions of the differential
equation (2y + xe¥)y’ +e¥ =01is {(z,y) € R? : ze¥ = ¢; c € R}.

oM

Let M = 2y/a?2 —y? and N = —(1 4 2z/2? —y?). B =
x
2 ON
% = T The differential equation (2yv/22 —y2)y’ — (1 +
e =y

2x4/x? —y?) = 0 is exact.

OF 2 :
o = —(L+ 207 =), then F = —o — Z(a® — )} + f(y)
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and a&TIgj = 2yv/a? —y? = 2yv/a? —y? + f'(y). Then f'(y) = 0

2 ,
and F(z,y) = —o — g(x2 — yz)% + f(y). The set of solutions of

the differential equation (2yv/22 — 32)y’ — (1 + 22v/22 — y2) = 0 is
D) .
{(z,y) eR? 1z + g(ﬂﬁg - y2)% =¢; c€R}.

M N
Let M = 622 —y+3 and N = 122y —sin . a— =12z = a— The
Ox oy’
differential equation (6% —y + 3)y’ + (122y — sinz) = 0 is exact.
oF oF
I 122y — sinz, then F = 622y + cosz + f(y) and 0= 62% —
€z Y
y+3 =622+ f'(y). Then f'(y) = 3 —y and F(z,y) = 6%y +
coszt + 3y — %yQ. The set of solutions of the differential equation
(622 —y +3)y + (122y —sinx) = 0 is {(x,y) € R? : 622y + cosx +
3y—3y® =c¢ ceR}
2 2 1 M 2 N
Let M = % and N = 2 — —. a— =—== % The differential
Y
2 2 1
equation (y—;v)y’ + (; - ?) =0 is exact.
oF 2 1 . OF 20 _2x
Then f'(y) = 0 and F(z,y) = In x2 - y% The set of solutions of
. . . 2z, , 2 1 . 2
the differential equation (ﬁ)y + (E - ?) =0is {(z,y) € R?:
Ina? — % =¢; c € R}
oM ON
Let M =¢y*+2zand N =2 +y. — =1= The differential
Ox 8y
equation (y? + z)y’ 4+ 2% + y = 0 is exact.
F OF
B = 2® +y, then F = 12° + zy + f(y) and o =z+y? =
z+ f'(y). Then f'(y) =y* and F(z,y) = 32° + zy + 3y°. The set
of solutions of the differential equation (y* + 2)y’ + 2% +y = 0 is
{(z,y) e R? : 23 + 32y + y3 = ¢; c € R}.
oM ON
Let M = 32%y +y® and N = 22 + 3zy?>. — = 6zy = —. The
ox Jy
differential equation (3z%y + y*)y’ + (z* + 3zy?) = 0 is exact.
oF oF
o = x°+3xy?, then F = 123+ 32%y%+ f(y) and 50 = 3z2y+y° =
€T Y
2%y + f'(y). Then f'(y) = y* and F(z,y) = 30+ 3x2y2 + 3yt
The set of solutions of the differential equation (3z%y +1>)y’ + (m2 +
32y?) = 0is {(z,y) € R? : 423 + 1822y + 3y* = ¢; c € R}.
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oM ON
Let M = 23473 and N = 32%y. Iy =322 = a—y The differential

equation (2 + y3)y’ + 322y = 0 is exact.
OF
B 3z%y, then F = 23y + f(y) and e 2 +y° =%+ f(y).
€z Y
Then f'(y) = y* and F(z,y) = 23y + %y‘*. The set of solutions of
the differential equation (2® + 3®)y’ + 32%y = 0 is {(z,y) € R? :
43y + 2yt = ¢; c e R}

oM ON
Let M = y? —2? and N = 2% —y?>. — = —2z, — = —2y. The
ox dy
differential equation (y? — 2?)y’ + (2% — y?) = 0 is not exact.
oM ON
Let M = ze™ and N = ye™. — = (1 +ay)e™ = — = —2y.
Ox dy

The differential equation ze®¥y’ + ye®¥ = 0 is exact.

oF oF

B = = ye", then F = e*¥ + f(y) and o ze™ = ze™ + f'(y).
Then f'(y) = 0 and F(z,y) = e€*¥. The set of solutions of the
differential equation ze™y’ + ye*¥ = 0is {(z,y) ER? 2y =¢; c €
R}.

oM ON
Let M = z? and N = —2zy. e 2z, 0 = —2z. The differen-
Y
tial equation 22y’ — 22y = 0 is not exact.
M N
Let M =z and N = 23 +y. 9 =1= a— = —2y. The differential
Oz y
equation 2y’ + (23 + y) = 0 is exact.
F
ax—x +y, then F = +xy+f()andaa—y:x:x+f’( ).

Then f'(y) =0 and F(w y) 12% + zy. The set of solutlons of the
differential equation 2y’ + (23 +y) = 0is {(z,y) € R? : 2 + 4oy =
¢; c€ R}
Let M = cosx and N = —ysinz — €*. 8—M = —sinx = 6—N The
ox dy
differential equation coszy’ = (ysinx + e*) = 0 is exact.
or _ hen F = —e” d or _ =
= —(ysinz+e”), then F = ycosz—e®+ f(y) an a9y =cosx =
cosz + f'(y). Then f'(y) =0 and F(z,y) = ycosx — e®. The set of
solutions of the differential equation coszy’ = (ysinz + €*) = 0 is
{(z,y) € R? 1 ycosw — e® =¢; c € R}.

oM
Let M = tan(z +vy) and N = tan(z +y) — 1. — =sec’*(x +y) =

Ox
ON ,
o The differential equation y tan(z + y) = 1 — tan(x + y) is
Y
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exact.
oF

e tan(z + y) — 1, then F' = In|sec(z + y)| — z + f(y) and
z

88—5 =tan(z +y) — 1 =tan(x +y) — 1 + f'(y). Then f'(y) = 0 and

F(z,y) = In|sec(x + y)| — x. The set of solutions of the differential
equation y tan(z +y) = 1 — tan(z + y) is {(z,y) € R2 : In | sec(z +
Yy)|—x=c ceR}.
2 1 (OM ON 1
Let M = 2 and N = 2z. — 0 —a— =—.
Y N \ Oz oy Y
g(y) = y is an integrating factor. The differential equation becomes,
22y + 22y = 0.
Let M; = 22 and N; = 2zy.

aé\;{l = frm—ex = 8([;7\;1. The

differential equation 2%y’ 4+ 2zy = 0 is exact.

23 2 23 2 2 /

p = 2zy, then F = z°y + f(y) and 50 =% =% + f'(y). Then
€L Y

f'(y) =0 and F(x,y) = 2%y. The set of solutions of the differential
2

equation x—y' +2r=0is {(z,y) € R?: 2%y = ¢; c € R}
Y

y = 0 is a solution of the differential equation. For y # 0, let
1 /fOM ON 4
M=y*+3zand N=—y. — [ ——— — ) =——.
Yo+ ovan YN ( oz 6y> Yy
g(y) = —; is an integrating factor. The differential equation becomes
Y

1
fory #0, (1+ 3%)3/ — — = 0. This differential equation is exact.
Y Y

oF 1 x OF x T
Then f'(y) = 1 and F(z,y) =y — ;5. The set of solutions of the
differential equation (y* + 3z)y —y = 0 for y # 0 is {(x,y) € R? :
Yy — y% =c¢; c€ R}

y or

glx) = is an integrating factor. The differential equation be-
x

Let M =z and N = —y — 22 sin z. 1(8]\7 8M> 2.
M T
2

/ .
comes for z # 0, %y — 2 —sinz.

oF oF 1
— = —% —sinz, then F = L4 + cosz + f(y) and = — =
Oz x T dy T

1

—+ f'(y). Then f'(y) = 0 and F(x,y) = £ + cosz. The set of
T
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solutions of the differential equation zy — y = 22

{(z,y) e R?: L 4+ cosz =¢; c € R}.

sinz for x # 0 is

1 M N
Let M = 2(sin(x)+sin(y))+y cos(y) and N = y cos(x). 5 <86x - aa—y
1
—. ¢g(y) = y is an integrating factor. The differential equation

)
becomes, [2(sin(z) + sin(y)) + ycos(y)]yy’ + y* cos(z) = 0, Z—F =
x

y® cosx, then F' = y?sinz + f(y) and Z—I; = [2(sin(x) + sin(y)) +

ycos(y)ly = 2ysinx + f'(y). Then f'(y) = 2ysiny + y?cosy and
F(z,y) = y?sinx + y?siny. The set of solutions of the differ-
ential equation [2(sin(z) + sin(y)) + ycos(y)]y’ + ycos(x) = 0, is
{(z,y) € R? : y?sinx + y?siny = ¢; c € R}.

1 [fOM ON 1
Let M = 32%4+y—y?and N = 23 —321° +2. — [ — — =— ) = —.

N \ Oz Jy Y
g(y) = y is an integrating factor. The differential equation becomes,

oF

oF T ox
then F = y?sinx + f(y) and oy [2(sin(z) +sin(y)) +y cos(y)|y =
2ysinx + f'(y). Then f'(y) = 2ysiny + y?cosy and F(x,y) =
y?sinz + y?siny. The set of solutions of the differential equation
[2(sin(z) + sin(y)) + ycos(y)]y’ + ycos(z) = 0, is {(z,y) € R? :
y?sinz + y?siny = ¢; ¢ € R}.

[2(sin(z) + sin(y)) + ycos(y)]yy’ + y? cos(z) = 0 = y?cosx,

d
y = 0 is a solution of the differential equation. If y # 0, Y
Y

2xdx. Then In|y| = 22 + ¢. Therefore, the general solution of the
differential equation 3’ = 2zy is y = Ae‘”z, with A € R.

d
y = 0 is a solution of the differential equation. If y # 0, Y
Yy

z?dz. Then In ly| = %x?’ + ¢. Therefore, the general solution of the
differential equation 3’ = 22y is y = )\6%13, with A € R.
The differential equation (14 22)y’ = 1 is equivalent to y' = Tia2

x
then y = tan~!(z) + c is the general solution of the differential
equation.

y = 0 is a solution of the differential equation.

11 I x+2
3—1 3\z—-1 22+z+1)
1 |z —1] 1 <2x+1>
For 0O,Inly =-In————-— —tan +c
y# =3 ViZtrz+1 V3 V3
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10)

11)

12)

13)

14)

1 1 11 1 w42
3—-1 (z—1)(2+2+1) 3z—-1 3a2+z+1
dx 1 1 1 2¢x 4+ 1
— = Zlnjz—1|— = In(2? 1)— —— tan~!
/m3—1 3n|ac | 6n(:17 +x+1) W an” " ( 7

y = 0 is a solution of the differential equation. For y # 0,
Injy| = 11n|:v—1| — 1ln(ac2—i-x-|-1) - itan_l(zr—i_l)—l—c
Y 3 6 33 73 .
y = 0 and y = 2 are a singular solutions. For = # 0, y # 0 and
. yl 1 y/ y/ 1
y # 2, the equation becomes: —— = - —— — = | = —.
yy—-2) 2\y-2 y x
Yy 2 _1
Yyl =1+ Xe =.
y—2 ||

y = =+1 are a singular solutions. For =z # 0 and |y| < 1, the

/

_ ¥y
1—92

)+ec.

Then In

1
= — 4+ c. We get
x

1
equation becomes: = —. Then sin"!(y) = In|z| + ¢ and
x
y = sin(In |z| + ¢).

y = 1 is a singular solution. For z # —1 and y # 1, the equation

becomes v ! Th ! ! +
ecomes: = . Then —— = c.
(y—1)2  (z+1)2 y—1 x+1
y = —1 is a singular solution. For y # —1, the equation be-
! 1 1
comes: 1Z_y = iTae Then Inly + 1] = itanfl(g) + ¢ and
y:)\eétan_l(%), AeR.

The equation 3’z tany = —1, is a separable equation. For z # 0, the
equation fulfills the following implicit equation —— = In |z| + c.
cosy

y = ay+a+y+1l < y = (z+1)(y+1). Theny = —1+ ez @+D?,
with A € R.

y' = 3yz? —32% < 3y = 32%(y—1). The function z = y—1 fulfills
the differential equation 2’ = 3z2z. 'Ehen 2= \e®" and y = Ae”’ 41
, with A € R. Since y(0) =2, y =¢e* + 1.

y = 3%% <= (3y*+ 1)y = 1. Then y*> +y = 2 + c. Since
y(0) =1, then 3> +y = = + 2.

2 2
In this case y' = Y The domain of the function flz,y) = % is

x
Q=R*\{(0,y); y € R}.

y = 0 is a solution of the differential equation zy’ = y? and defined
on R.
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1 _
For y # 0, — = In|z| + ¢. Then y = ————. Since y(1) = 1,
Yy In|z|+ ¢
y= 1—+n\wl (This solution is defined in a neighborhood of 1.)
d 1 1 1-—

15) " % 1= xdz. Then 5;52 +c= 3 In ‘14—5" which is equivalent to
1—y 22 et 1 . et 1 .
Ty =X’ ory= T 11 Since y(0) =0, y = o (This
solution is defined in a neighborhood of 0.)

16) In|y| = —cos(x) + ¢, then y = Ae”°**. Since y(0) = 1, then
y = el—cos:c_

17) zy’ = y(1 + 22%).
y = 0 is a solution. For z # 0 and y # 0, In|y| = In|z| + 2 + c.
Then y = Aze® , with A € R. Since y(l)=1,y= ze® 1

18) tan~'(y) = tan"'(x) + ¢. Since y(0) =1, tan~*(y) = tan~'(2) + %.

19) ¢/ = ze™¥ < y'e¥ = z, then e¥ = %1’2 + ¢. Since y(0) = 1,
e¥ = %xz +e.

1
20) For = # 0, xy’ = e~ ¥ is equivalent to y'e¥ = —. Since y(1) = 1,
x
eV =In|z| +e.

sin(z)

cos(y)

21) The solutions of the differential equation y’ = fulfills sin(y) =
—cos(z) + ¢

22) The solutions of the differential equation 3’ = L fulfills vy =a?+ec
Yy

The function f(z,y) = 1+ cos(y) is C*°, then there is a unique solution
for the Cauchy problem. Moreover, the equation is equivalent to: y' =

20052(%). For y # (2k + 1)m, for k € Z, the equation is also equivalent

1
to iy’ seCQ(%) =1lor (tan(¥)) = 1.

1) The unique solution of the differential equation (1.9) for a = 3r is

Yy =237
2) The solution of the differential equation (1.9) for a = 0 is y =
2tan~!(z).
33| Dy =i v2) =0 = YPdy={2, y2)=0 <= y’ =
[
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Yy =2 y(l) =1 < ydy =<2 y1)=1 <= ¢* =
t
(&

/

y pu—
y+1

y = —1is a solution. For y # —1, the equation becomes y' —
2
z. Theny —Inly +1| = 5 —2.

Forall ke Z, y = g + k7 is a solution of the equation.
/

For y # g + km, the equation becomes . Y —sinz. Then tany =

0s2 y
1 —cosz.
Iftye (F+kn,5+k+r) = ((k+1)r—3,5+ (k+ 1n),
y=(k+1)m+tan (1 — cosz).

y(2) =0 <= yldy =2 y2)=0 <= ¢*=

y2lnzx’ Inz?’

/:

/”” dt
5 Int’
/

Yy Zet, y(1) =1 <= gdy:—ewdz, y(l) =1 = y° =
2

/xetdt
1t

w

For the equation 3y’ = %, we set y = xz. The equation becomes:
Y+ 4dx
2z —1 1)?
P— ZZ+ 1 ¢ —(Z—;i. After integration, we get: P
x

In|z+1|=In|z|+cor —Inly+z|=c
y+x

This equation is homogeneous. We set y = zz. The equation is

2z 1—2? 1
: !/ _ /! —
equlvalent to xz + 2z = m Then z m = E After
integration we get % _rora? +y?=ay, a €R.
1+ 22

We can also take x = rcosf and y = rsinf. The equation is equiv-

dr do . .
alent to — = = Inr =Insinf + ¢ or r = Asinf6.

r tan 6

For y = zz, the equation zyy’ — y? = /22 — y2 becomes: z°z2' =
/
1

Vx2(1 —22). For x > 0, we get \/% =5 Then /1 —22 =

1
—+c
T
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2 2

4) For y = xz, the equation y = z 5;;! becomes: —- ]i%zjgl = %
12
Then In|1 — 62%| = 5 In|z| +c.
’ 1
5) For y = xz, the equation zy = y + ze+ becomes: e ?z' = — for
x

x#0. Thene * = —In|z|+¢

Z/
) VIit2
—, for z > 0, then In(z +v/1 + 22) = cosh™!(2) = Inz +¢, for = > 0.
x

6) For y = zz, the equation zy’ —y = \/22 + y2 becomes:

3—2y
7) Let z =2y —3 and t = 2 4, th ti =
) Let z Y an T+ e equation y et 2y 1 1
becomes: 2z’ = ﬁ Let z = tw, the equation becomes: tw’ +w =
z
—21—, which is equivalent to 1111?));0 — % = %, hence %ln |1+ 3w| —

In|w| = Int].

Ifz:y—Qac,thenz’:y’—2:z2—|—1—2. Hence 2/ = 22 — 1,

1- e —1
In o z+cand z = 67, with A € R. The solutions of the
142 Ae? +1
differential equation are given by
91 4+ e —1
= 2T —_—
Y et +1°

where A € R.

The straight lines 1 — 4z — 4y = 0, and = 4+ y = 0 are parallel, hence for
1-4 1-3
: “ We deduce that the

!

z=x+y wegetzz —1= or 2/ =

z z
solutions of the differential equation are given by

1
x—;—y +§ln|1—3x—3y|—|—x:c,
where c € R.
1
Let z =zy or y = £ then xy’ +y = 2’ and 2’ = z <1+Z+1>. The
z\1-z
function z fulfills the differential equation 2’ = — (ffz). Then y — Axe™ =

0, where \ € R*.

6-1| 1) The general solution of the homogeneous equation y' — zy = 0 is

Y= )\e%mz, AeR y=—-1lisa particzular solution. Then the general
. . . 1
solution of the equation is y = Ae2® — 1, A € R.
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2)

10)

The general solution of the homogeneous equation 3’ —y = 0 is
1 1
y=Xe", AeR y= 5(334—1)696—167% is a particular solution. Then
1 1
the general solution of the equation is y = Ae” + 5(96 +1)e” — 16_907
AeR.
The general solution of the homogeneous equation y’ + 2y = 0 is

y =X NXeR y= gew is a particular solution. Then the
1
general solution of the equation is y = e 2% + gem, AeR.

The general solution of the homogeneous equation zy’ + 2y = 0 is
Y= %, AeR

x
Using the variation of the constant method, y = :TA?’ with N =
x cosx = xsinx+cos x+c. Then the general solution of the equation
is y = 222 + 7““1?;“)”, with A € R.
The general solution of the homogeneous equation 3’ = 2xy is y =
Ae”, A ER.
Using the variation of the constant method, y = )\612, with M =
—2* Then the general solution of the equation is y = Ae® +

s (7 42 .
e e ' dt, with A € R.
0

e

The general solution of the homogeneous equation 4 + ytanz = 0
isy=Acosz, A € R.
Using the variation of the constant method, y = Acosz, with X =
2sinx. Then the general solution of the equation is y = Acosx —
2cos? x, with A € R.

The general solution of the homogeneous equation zy’ +y = 0 is

A 1 15 A
Yy=—.y= fzxs is a particular solution. Then y = 71393’ + — is

x x
the general solution of the equation zy’ + y + 23 = 0.

The general solution of the homogeneous equation i +2xy = 0isy =

Ae=%. By the variation of parameter meth20d, the2 generz)al solution

of the equation y' + 2zy = e " is y = Ae ™™ +e 7 [[e ~'dt.

The equation 3’ cosx = (ysinz + €%) is ;quivaler;t to 4L (ycosz) =
e

cosT  CosST

e”. Then the general solution is: y =

The equation y’ = e2* 13V is equivalent to: y'e™3¥ = €27, then the

general solution fulfills 7567374 = 562‘70 +c.
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11) The general solution of the homogeneous equation is: y = Az. The
general solution is: y = Az — x cosz.

A
1) 2y +2y =0 < y= — - The variation of the constant method
x
c r—tan"lax
ields that X' = L, theny=4+—5 - ———.
y T+a? Yy 22 22
r—tan " x
2) Since 111% ———5—— =0, then the only solution of the differential
rT—r i
. . z—tan"lz
equationon Risy = ————.
T

)i 2?2 —1 1 + 2z
=4 ——.
z(1+ x2?) x 1+ a2
The solutions of the homogeneous equation are:

1 2
y=2A +x

:)\a:—&-i, AeR.
x

.. 1+ a? 1+ a?
ii. hi(z) = 5 and ho(z) = T

2) i. By the variation of constant method, we look for a particular
1+ 22
solution in the form A(z) iy

2x 1

(ETSE then A(z) = L

N(z)=—

1
ii. The function f(z) = — is a particular solution of the equation,
x

on I or on I, and the functions g;(z) = 1 and go(z) = L.

3) f is continuous at 0 if and only if A = 4 = —2 and « = 0. Then
f(z) = —x for all x € R.

4) f is the unique solution of (1.18) on R.
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1)

1 2z 22 -1
We have —— = .
v ;v+1+ac2 (1 + 22)
On the interval I; or I, the homogenous equation is equivalent

to

—-

d7y B _dic 2xdx

Yy A
Then the general solution of the homogeneous equation on I
. A1+ 2?)
oron [isy= ——=.
|z
1+ a2 14 22
ii. h = dh = .
ii. hyi(x) 5y o0 2(z) o
i. By the variation of the constant method, we look for a partic-
1 2
ular solution in the form A(m)w with A a differentiable
x
2 1
function. We giVe A/(I’) = 7@, then )\(l’) = m
g1(xz) =2 on I1.
ii. g2(z) =1 on Iy.
We have:
1 AMl4+2%) 24X A
f(x) = 4 ( +I): + +—x ifz <0
T (12—;—1::02) 22—1?: 2:c
f@) =-+E SR e w0
T T 2x 2

If X £ =2, li%l |f(z)] = 4oo diverges at 0~ and if p # —2,
z—0—

lim |f(x)| = +oo diverges at 0~.

z—0t

f is continuous at 0 if and only if A = p = —2.

In this case f(z) = —x for all z € R and it is easy to prove that this

function is the unique solution of the equation (1.20) on R.

The general solution of the homogeneous equationisy = —. y = %x

is a particular solution. Then the general solution of the differential
! A
equation xy +2y =xisy = %x—ﬁ——Q, AeR
x

The general solution of the homogeneous equation is y = Asecz.

Using the variation of the constant method, we get A = x. Then
x

the general solution of the differential equation y’ — ytanz =
x? x?
isy= 5 + Asecz, A € R. If y(0) =0, then y =

cosx’

2cosx’
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A
The general solution of the homogeneous equation is y = T
x
Using the variation of the constant method, we get \' = x(x + 1)2.
Then the general solution of the differential equation 3’ + % =
x

A T 1
2 : 2 3
i —— - 1 - T 1 .
*+Tisy 1+3(:r+ ) lz(x—i— )

The general solution of the homogeneous equation is y = A(cscz —
cotz). Using the variation of the constant method, we get \' =
cos z+cos?(z). Then the general solution of the differential equation

y' + sin(z)y = cos(z) sin(z) is y = M(escx — cot ) + (1 + gcosx +
3 sinz cosz)(1 — cosx).

The general solution of the homogeneous equation is y = Ae’™.

22
—?x + ﬁw + =5 is a particular solution. Then the solution of
the differential equation 3y’ — 7y = 322 — 42, y(0) = 0is y =

%(6796 -1)— %xz + %x

The general solution of the homogeneous equation is y = x2)\— T
Using the variation of the constant method, we get A’ = 1. Then
the general solution of the differential equation (2% — 1)y’ = 1 —2zy
isy= A + !

22—-1 z-1

The general solution of the homogeneous equation is y = —- Using
x
3

the variation of the constant method, we get A = z°. Then the

solution of the differential equation 3y = z(1 —y'), y(1) = % is
T

Y= 1

The general solution of the homogeneous equation is y = Ae™”.

Using the variation of the constant method, we get A’ = 1. Then

the general solution of the differential equation ¢’ +zy —e™* = 0 is
y=(x+Ne ™.

/

y = 0 is a solution of the differential equation. For y # 0, LI
Y

1 1 1 1 2—-2

— = - . Th
P 1 371 3221251

2¢+1
V3

1 1 )
1n|y|:§1n|x—1|—gln(xz—l—x—&—l)—l——tan_l(l—l—( )+ec.

3V3
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2)

22
The solution of the homogeneous equation is y = Ae'2. y = —1 is
a particular solution. Then the general solution of the differential
2

equation y —zy =z isy=—14+Xe=z, A e R.
The solution of the homogeneous equation is y = Ae®. Using the

variation of the constant method, we get M'e® = coshz. Then N =
%(1 + €72%). Hence the general solution of the differential equation

T 1
y —y=-coshzisy= Xe® + (561 - Ze*m), AeR
The solution of the homogeneous equation is y = Ae™2*. Using
the variation of the constant method, we get N'e™2* = e®. Then
N = €37, Hence the general solution of the differential equation

1
Yy + 2y =e® iSy:)\SI+§€x,)\€R.

. L A :
The solution of the homogeneous equation is y = —. Using the
x
variation of the constant method, we get A = zcosxz. Then the

general solution of the differential equation zy’ + 2y = cosz is y =
A zsinz +cosz

e > ,AeR.

The solution of the homogeneous equation is y = Ae® . Using the

variation of the constant method, we get N = ze~®". Then the

general solution of the differential equation ¢y = z + 2zy is y =
1

Ae® — 3 AER.

The solution of the homogeneous equation is y = Acosz. Using
the variation of the constant method, we get X cosx = 2sin x cos .
Then the general solution of the differential equation ¢y’ + ytanx =
sin(2z) is y = Acosz — 2cos’x, A € R.

A
The solution of the homogeneous equation is y = . Using
cosx
the variation of the constant method, we get A’ = e*. Then the
general solution of the differential equation y’ cosxz = (ysinz + )
A x
isy = te ,AeR
cosx

y' +1y = 2292 is a Bernoulli equation. y = 0 is a solution. For y # 0,

we set 2 = —, we get 2/ —z = —2x. z = 2x+2 is a particular solution.

Then y = is the general solution of the equation.

Ae? + 2z + 2
y = 0 is a solution of the differential equation 2%y’ — 3® = zy. For

1
xy # 0, we set 2 = —. The equation becomes, 222’ + 2xz 4+ 2 = 0.
Y
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The general solution of the homogeneous equation z2z’ 4 2xz = 0

A
is 2 = — and by the variation of parameter method, the general
x

2
solution of the equation 222’ +2zz+2=01is z = — = =
x x
If 2 = %,then —xz' +22—-1=0.
z= % is a particular solution and the general solution of the homo-
1 1
geneous equation is: z = A\z2. Then — = \z? + 3
Yy

2
For y # 0, the equation is equivalent to yy’ = L + 1. The function
T

z = y? fulfills the linear equation: 2’ = 2% 1o,
x

z
z = Az? is the general solution of the homogeneous equation 2’ = 2=
x

and the general solution fulfills y? = \z? — 2z.
zy +2y —y? =0,
Y1

r oy

y = z is a solution of the differential equation y = 1 — z2 + y2. Let
z =y — x, then the equation is equivalent to z’ — 2xz — 22 = 0. Let

xr
u = %, we get ' — 2zu — 1 = 0 Hence u = Ae® + e*‘TQ/ etgdt,
0

AreR.

y = 2 is a solution of the differential equation zy’ — 2y + y2 = 7%

Let z = y — 22, then the equation is equivalent to z2’' + 2(x? —
1)z + 2% =0. Let u =1, we get zu’ +2(z*> — 1)u+ 1 = 0. Hence

2 .2 1 2
u=Are ¥ —xe 7 /—Qew dx, A € R.
x

Solutions of Exercises on Chapter 2

1 1 =«
The Wronskian of this system is W =€ |1 2 1| = (22 — 3)e>,
140
1

1-2

1)

The Wronskian of this system is W = e* =e*(L —Inx).

Inx
1
xT

1
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2) Let y be a solution, then the Wronskian of the system {y,y1,y2} is 0.

y 1 Inzx
Then e® |y’ 1 % = 0. Hence y fulfills the following differential
y 1 —3

equation: z(1 —zlnaz)y” + (14 22Inz)y —y(1 +2z) = 0.

y=e" =1y =y , then e” is a solution to y" — 2y +y =0. If y = ez,

Y =e"z+e 2 andy = e z42e%2'+e%z . Hencey —2y +y=0=e"z".
Then {e*, ze®} is a fundamental set of solutions.

If y = (e** cosx)z, y = (e** cos )2’ + €2*(2cosx — sinx)z and

y = e (z” cosz + 22'(2cosx — sinx) 4+ z(3cosz — 4sin x) Hence

Yy — 4y +5y = e (z” cosx — 22’ sin x)) Then e2* cosz is a solution,

we take z = 1 and y = (e%* cos x)z is solution of the differential equation
if and only if, z cosz — 22’sinxz = 0. Then 2’ = Asec?z and z = tan .
We deduce that {e® cosx,e?® sinx} is a fundamental set of solutions.

15| Let y =2z, 9 =22/ +zand y = xz +22. Then (z — 1)(z —2)y —
a2y +y =x(x—1)(z —2)z +2(2—3z)z. Hence y = x is a solution
and y = xz is a solution to (z — 1)(z — 2)y — zy’ + y = 0 if and only
" - 2 2
if o(z —1)(z —2)2z + (2% — 62 +4)z’ = 0. Then 2’ = )\x(f(:c)l) and
4
z=——+In|z—-1|
x
The set {z,—4 4+ zIln |z — 1|} is a fundamental set of solutions.
" it
We know that W(z) = W(a)e Ja 2t = W(a)@ =% on any interval

EET

which do not contain 0. W(2) = §.

Yo =&, yh=3r"7and y; = —127 5. yoy, +(1h)? = —a 1+ Ja 7 =

0. a+b/z is not in general a solution of this equation. This result doesn’t
contradict the method of linear superposition since the equation is not
linear and homogeneous.

Ay + Bys Ayl + By

_ = = (AC — BD . Th
W(y3,y4) Cy1 + Dys Cy’1+Dy’2’ ( C )W(yhyQ) €

1-9

necessary and sufficient conditions are such that the functions y3 = Ay, +
By, and also y4 = C'y; + Dy> form a linearly independent set of solutions
is AC — BD # 0.

1) y=z,y =1 and y =0, then y = z is a solution of the following
differential equation 2%y — (22 + 2z)y + (z +2)y = 0.
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y=uxz vy = xz' +z and y = 22" +22/. Then :czy” — (2% +
+(z+2)y = 232" +2222' — 22 (2+2)2 — (22 +22) 2+ 2(x+2)2 =
—z ). Then z = \e® and the general solution of this differential

1"

equation is y = azx + bze®, a,b € R.

y=e" =y =1y ,then y = e is a solution of the following differ-

ential equation (z — 1)y” — xy/ +y=0.

Let y = e®u, y' = e®u/ + e®u and y = e*u’ + 2¢®u + e®u. Then
(x—1)y" —xy +y=(z—1)e*(u +2u +u) — ze” (U 4 u) 4+ e"u =
e“((x —1)u" + (z—2)u'). Then u = Aze~* and the general solution
of this differential equation is azx + be®, a,b € R. The Wronskian of
x and €® is (x — 1)e”

2-1| y(0) =9 and y(z) + SSinx/ y(t) costdt — 8cosx/ y(t)sintdt =9,
0 0

y'(z) + 80053:/ y(t) costdt + SSinx/ y(t) sintdt = 0, y'(0) = 0,
0 0
v +9y—9 = 0, y(0) = 9 and 3/(0) = 0. Theny = %e(3+3‘/§)”’+%e(3_3‘/§)x.

ii.

iil.

xT

x
h'(z) = cos :1:/ g(t) costdt + sinx / g(t) sintdt and
0 0

B (z) = —h(z) + g(z) cos® & + g(x) sin?z = g(z) — h(z). Then
h is a solution of the differential equation (2.10).

Since sin(z—t) = sinx cost—cos z sint, then h(z) = / g(t) sin(z—
0
t)dt.

x T+
h(z) 4+ h(z +m) /0 g(t)sin(z — t)dt — /0 g(t) sin(z — t)dt

x4+
= —/ g(t) sin(z — t)dt

= / g(x + u) sin udu.
0

h(z) 4+ h(z + ) > 0, Vo € R because g(z) > 0, Vx € R.

Let f be a solution of the differential equation (2.10) on R. The
function k = f — h fulfills the differential equation y* + y = 0.
Then there is a,b € R such that f = h + acosx + bsinz. It
results that f(z) + f(z +7) >0, Vo € R.

The function g = F" + F is non negative and the function F’
is a solution of the differential equation (2.10). Then F(z) +
F(zx+m) >0, Vx €R.
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The general solution of the homogenous differential equation is y =

2-4

acosx + bsinx. Using the classical method for solving this differential
equation, y = Ucosz + Vsinz, we find: U'cosz + V'sinz = 0 and

1
—U'sinz + V' cosz = m. Then

sinx

V2

1 1
U= ) tan"!(cos ) + a, V = ——tan"!( )+ b.

2V/2

1) The characteristic equation is 72 + X = 0.
o If A = 0, the general solutions of this equation is y = ax + b, with
a,beR.
e If A > 0, the general solutions of this equation is y = acos(ﬁx) +
bsin(v/Az), with a,b € R.
e If A < 0, the general solutions of this equation is y = aeV=Ar 4
be=V=>%_ with a,b € R.

2) To have a solution y of the differential equation y” + Ay = 0 such
that y(0) = y(1) = 0, we must have A > 0 and X\ = k?7?, with k € Z.

1) By integration by parts

ax [e %4

/e‘m sin? wdr = 627 - %;27% (accos(2x) + 2sin(22)) + ¢
and
[e %4
/em sinzcosxdr = 67 sin?(z) + % /e‘m sin? zdx
[e %4 ax (6%
= 67 sin?(z) + az _ 4(32€+ m (avcos(2z) 4 2sin(2z)) + ¢

2) The equation 12 — 2kr + (1+ k?) is the characteristic equation of the
differential equation. Then e(**D% and e(*~D* are solutions linearly
independent of the differential equation.

3) Using the variation of the constant method, the general solution of
the differential equation has the form y = Ue*+t1)* 4 Vb= with
U'etbtDz L y/e(k=Dz — 0 and (k+1)U'eF D7 4 (E—1)Velk—Dz =

e*sinz. Then

1 1 1 k
U/ = ie_kx SinfL’, U = §€_kl (_14_]{:2 COSx — WSinx) +Cl,

2—-k

1 1 .
V= —ZeCFTging, V= —e2h= coszx +

1
2 2 <1+(k—2)2 1+ (k—2)2

Smx

)+
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1) The characteristic equation of the differential equation y’—5y’ 46y =

0is 72 —5r+6 =0 = (r — 2)(r — 3). The general solution of the
differential equation is y = ae3* + be??, a,b € R.

2) The characteristic equation of the differential equation 4y" 44y’ +y =

0is 4r? +4r +1 = 0 = (2r + 1)2. The general solution of the
differential equation is y = (az + b)e™ 2%, a,b € R.

3) The characteristic equation of the differential equation y”+y'+y = 0

isr?+r+1=0=(r—e" 1Jri\/g‘/"")(r—e71+2i\/§ ). The general solution

of the differential equation is y = ae~ 2% cos(5” V3 ) +be~ 2% sin( \égx),

a,beR.

4) The characteristic equation of the differential equation y" +y’ —2y =

222 —3x+1isr?+r—2=0= (r—1)(r+2). The general solution of
the homogeneous differential equation is y = ae® 4 be =27, a,b € R.

1 3 3
—51:2 — 5% E is a particular solution. Then y = ae® + be™2% —
%mz - %x — 4, a,b € R is the general solution of the differential
equation.

5) The characteristic equation of the differential equation 2y” + 2y’ +

Jy=a2+2r—1is2r2+2r+3=0=(r—e" x)(r—e#’”).

The general solution of the homogeneous differential equation is y =
ae” 2””(308([ )+ be 2Zsm(\2[ ), a,beR.

1 2 25

3% 2 4 9%~ 57 is a particular solution. Then y = ae™ 2% cos( ‘ég )+
be~ 2f”s1n(f )+ 322 + 2z — 2,
the differential equatlon

14+iV5
2

a,b € R is the general solution of

6) The characteristic equation of the differential equation y” —2y’ +y =

e ®isr? —2r+1 =0 = (r —1)2 The general solution of the
homogeneous differential equation is y = (ax + b)e®, a,b € R.
1

Ze * is a particular solution. Then y = (az +b)e* + te™%, a,b € R

is the general solution of the differential equation.

7) The characteristic equation of the differential equation 3" —y' —2y =

z?e3% is 72 —r —2 =0 = (r + 1)(r — 2). The general solution of
the homogeneous differential equation is y = ae™® + be®*, a,b € R.

1
24— —— is a particular solution. Then y = ae™% + be?* +

10" 50 500
iz + —x + %, a,b € R is the general solution of the differential

equatlon

8) The characteristic equation of the differential equation y” — 2y +

2y =e"+xisr?—2r+2=0= (r—el™)(r—el7) The
general solution of the homogeneous differential equation is y =
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ae® cos(z) + be” sin(x), a,b € R.
e’ + E(x + 1) is a particular solution. Then y = ae®cos(x) +

be” sin(z) + e® + 3(z + 1), a,b € R is the general solution of the
differential equation.

9) The characteristic equation of the differential equation y"” + 4y =
sin(3z) is 12 +4 = 0 = (r — 2i)(r + 2i). The general solution of
the homogeneous differential equation is y = acos(2z) + bsin(2z),
a,beR.
sin(3x) is a particular solution. Then y = acos(2z) + bsin(2z) +
sin(3z), a,b € R is the general solution of the differential equation.

10) The characteristic equation of the differential equation y” + 4y =
cos(2x)+cos(4x) is 72 +4 = 0 = (r—2i)(r+2i). The general solution
of the homogeneous differential equation is y = a cos(2x) 4 bsin(2x),
a,beR.

1
z sin(2x) — r cos(4x) is a particular solution. Then y = a cos(2x) +
1

bsin(2z) + § sin(2z) — 15 cos(4x), a,b € R is the general solution of

the differential equation.
11) The characteristic equation of the differential equation y” + y =

1
———— is r* + 1 = (r +i)(r — i).The general solution of the
1+sin“x

homogeneous differential equation is y = a cos(x)+bsin(x), a,b € R.

Using the change of parameter method, the general solution of the
equation takes the form: y = U cos(z) + V sin(z), with U’ cos(z) +

V’sin(z) = 0 and —U’sin(z) + V' cos(z) = # Then U =

1+sin’z
! In <ﬂ+ cos(:v)) +a and V = tan"!(sin(x)) + b
22 V2 - cos(x)

12) The characteristic equation of the differential equation y” + 4y’ +
5y = cosh(2z)cosz is r2 +4r +5 = (r + 2 +i)(r +2 —i). The
general solution of the homogeneous differential equation is y =
e~2% (acos(2z) + bsin(2z2)), a,b € R.

Using the change of parameter method, the general solution of the
equation takes the form: y = Ue™ 2% cos(x) + Ve ?*sin(x), with
U'e=2% cos(x)+V'e 2 sin(x) = 0 and U'e™ 2% (— sin(x) — 2 cos(x))+

V'e=2% (cos(x) — 2sin(x)) = cosh(2z) cos(z). Then U = —% cos(2x)+

1
%e“ sin(2x)—Ee4I cos(2z)4aand V = e’ sin(2z)+ 55 € cos(2z)+

2 4 Lsin(2z) + 15 +b.
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The characteristic equation of the differential equation 3" —6y’+9y =
sinh®  is 2 — 6r +9 = (r — 3)3. The general solution of the homo-
geneous differential equation is y = (ax + b)e3?, a,b € R.

Using the change of parameter method, the general solution of the
equation takes the form: y = (U 4+ zV)e?*, with U’ + 2V’ = 0 and

1 1
3U'+(14-3x)V’ = e 3*sinh® 2. Then V = 3 <x +3e " — §674‘T + 666I>

4

and

1 1 3 1
U=-= (—xQ —3(142)e®+ —(1+4x)e ™ — —(1+ 6I)€_6I) .

8 2 16 36

The general solution of the differential equation : 3/ —y = 1 is

y=—1+ae”+be™ " a,beR.
The general solution of the differential equation : 4/ +y = 1 is
y=14acosx+bsinzx, a,b € R.

The bounded solutions on Rt of the differential equation : 4" —y = 1
arey =—1+be ™ beR.

All solutions of the differential equation : ¥ 4+ y = 1 are bounded
on RT.

The even solutions of the differential equation : ¢y’ —y = 1 are

y=—14acosh(z), a € R.

The even solutions of the differential equation : y” +y = 1 are

y=1+acosz.

Let y = —1 4 be®™ 4+ ce™*. y(0) = 0 = y(a) yields that b+ ¢ =1 and
1 . a

be® + ce® —1 = 0. It results that ¢ = 2sThe(a)'

Let y=1+bcosz+csinz. y(0) =0 = y(a) yields that b = —1 and

csina =1 —cosa.

Ifa€e2nZ,b=1and c €R.

If a € 277, b =1 and ¢ = tan(g).

The general solution of the differential equation y” —(a+ By +
afy =01is y = ae™® + be’*, with a,b € R.

The solutions of the differential equation y” +y = cosx is y =
acosz + (b+ 3)sinz, with a,b € R.

In use of the variation of parameter method, the general solution of

the differential equation y” +y= W is
cos(2x

+bsi L “(cosx) +1
= a COS Sin r—— tan COSX)COST n
Y 2 42

V2 +sinz\ .
sinx,
V2 —sinzx

a,beR.
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2-9

1) The general solutions of (5.11) are y = —14ae®+be~*, with a, b € R.
The general solutions of (5.12) are y = 1 4+ acosz + bsinz, with
a,beR.

If y(0) = a,y'(0) = B, the solution of (5.11) isy = —1 + %Mem +
%e’z and the solution of (5.12) isy = 14 (a — 1) cosz + (8 —
1) sinz.
2) 1) The bounded solutions on R for the differential equation (5.11)
are y = —1 + be™ ", with b € R and the solutions of the differ-
ential equation (5.12) are all bounded.

2) The even solutions on R for the differential equation (5.11) are
y = —1 4+ acoshz, with a € R and the even solutions on R for
the differential equation (5.12) are y = 1 4+ acosz, with a € R.

3) Let y = —1 + ue® + ve™” be a solution of the differential equation

(5.11). y(0) =y(a) =0 <= u+v—1=0and —14+ue*+ve * =0,
for a # 0. This system is Crammer and has a unique solution.
Let y = 1+ ucosx +vsinx be a solution of the differential equation
(5.12). y(0) = y(a) =0 < w =1 and vsina = 1 — cosa. This
equation has solutions if and only if a # (2n + 1)7, n € Z.

4) 1) W(x) = e*g(x). Since f' + A\f < g, then W' (z) > (f'(z) +

Af(x))er = (f(z)er™)’. After integration, we get f(z) < e £(0)+
e h(x),V z € RT.
2)
1 1 —
9(@) = 51+ 9(0) + ¢(0)e” + 51+ p(0) ~ (0))e ™ — 1.
Let f=¢' —¢and A=1, we have f'+ f = ¢ — ¢ < 1, then using
question a), we get

¢'(x) —p(x) < —e (1 + ¢(0) — ¢'(0)) + 1.

Also using the same question with A = —1 and g = —e™“(1+¢(0) —
©'(0)) + 1, we find

1 1
(@) < 5(1+0(0)+¢'(0))e" +5 (140(0)=¢'(0)e " ~1 = P(z), Va R
5) (x)=e" ¢ (x)=—e " Then ¢ +p=1—2"7%<1.
Y(x) = —cosx +sinx + 1.
p(z) —Y(zr) = —e " + cosx — sinz.
e(2nm) —p(2nm) =1 —e 2™ > 0 and (5 + 2n7) — (5 + 2nm) =

_ ,—2nm S 0.

|
—
o
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2-10| 1) If A > 0, the real general solution of the equation is y = a cos(v/\x)+
bsin(vAzr), with a,b € R.
If A < 0, the real general solution of the equation is y = aeV AT 4
be"/’im7 with a,b € R.
If A\ = 0, the real general solution of the equation is y = ax + b, with
a,beR.

2) There exists a non zero real solution of the equation such that y(0) =
y(1) =0 on ly for A = (kn)?, with k € N.

1
/e‘m sin xdr = i/eam(l — cos(2z))dx

1 ax
= %eaz + g (acos(2z) 4 2sin(2x)) + ¢,
with ¢ € R.
[e% 4 2
By integration by parts, /em sin? zdr = — sin® z—— /ew sin z cos xdzx.
a a
Then
/eo“'” sin x cos zdx = -5 sin? x—Ze“mfm (arcos(2x) 4 2sin(2z))+c

2) y1 = " cosz and y; = e sinx are linearly independent solutions

of the differential equation: y" — 2ky’ + (k% + 1)y = 0.

In use of the variation of constants method, the general solution of
the equation is y = Ue*® cos x + Vek® sin z, with

U'ek® cos x4V eb sinz = 0 and U’ (e¥® (k cos x—sin x)+V'e* (k sin 2+
cosz) = esinz. Then U’ = —e1 "M% sin?  and V/ = e =) sin z cos .

1 1
Ifk=1,e"sine, U = —g—l—zsin@x)—&—cl and V = 1 cos(2x) + ca.

1 e
kL U=—— ke ¢
FLU=—3qa—5° (1—k)2+4
e(l—k)x ) 1 (1 _ k.)e(l—k)a:
: - (=K \- M) T _ :
5 sin”z—e (A= k2 10 ((1 — k) cos(2z) 4+ 2sin(2x))+

(1—k)x
((1 — k) cos(2z) + 2sin(2x))+

caandV =
C2

2-12| 1) The general solution of this homogeneous equation is y = Ae3® +
Be** with A,B € R.

2) The general solution of this homogeneous equation is y = (Az +
B)e 3" with A, B € R.
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3)

4)

The general solution of this homogeneous equation is
3 3
y=Ae 3" cos(%x) + Be 3" sin(%x), with A, B € R.

The general solution of the homogeneous equation is y = Ae” +
Be %* with A, B € R.

The polynomial P = —22 + %x — g is a particular solution of the
equation y” + vy’ — 2y = 222 — 3z + 1.

Then the general solution of this equation is: y = Ae® + Be 2* —
1 5

5
The general solution of the homogeneous equation is y = Ae™ 37 cos(7x)+

5
Be 2" sin(%x)7 with A, B € R.
25

The polynomial P = 7%.%2 + %z — % is a particular solution of the

equation 2y” + 21y’ + 3y = 22 4+ 22 — 1. Then the general solution of

5 5 1
this equation is: y = Ae™ 27 cos(gx) + Be3® sin(gx) — gxz +
2 25
The general solution of the homogeneous equation is y = (Az+B)e?,
with A, B € R.

x €T

—e~ " is a particular solution of the equation y” — 2y’ +y = e~ 7.

4

1
Then the general solution of this equation is: y = (Az+B)e”+ Zefx,
with A, B € R.

The general solution of the homogeneous equation is y = Ae™* +
Be?* | with A, B € R.

1 7 3
e_?”:(l—ox2 + =% + %) is a particular solution of the equation
y" — 1y — 2y = 2%e73*. Then the general solution of this equation

1 7 39
is: y = Ae™" + Be** + e_zgf”(l—()x2 + 0" + %), with A, B € R.

The general solution of the homogeneous equation is y = Ae® cosx+
Be®sinz, with A, B € R.

1 1
e’ + 5% + 3 is a particular solution of the equation y” — 2y’ + 2y =
e”+x. Then the general solution of this equation is: y = Ae® cosx+

1 1
BeTsinx + e + §x+ 3 with A, B € R.

The general solution of the homogeneous equation is y = A cos(2z)+
Bsin(2z), with A, B € R.

1
~x sin(3x) is a particular solution of the equation y” +4y = sin(3x).
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Then the general solution of this equation is: y = Acos(2z) +
1
Bsin(2z) — 5 sin(3z), with A, B € R.
The general solution of the homogeneous equation is y = A cos(2z)+
Bsin(2z), with A, B € R.
1
T cos(4x) + - sin(2x) is a particular solution of the equation y” +
4y = cos(2x)+cos(4x). Then the general solution of this equation is:
1 1
y = Acos(2z) + Bsin(2z) — ) cos(4x) + 1 sin(2x), with A, B € R.
The general solution of the homogeneous equation is y = A cosx +
Bsinzx, with A, B € R.

Using the variation of constants method, the general solution of the
equation is written as y = U cosz + V' sin z, with

,  —sinz , __ COosT
~ 1+sina’  1+sin’a
1 2
Then U = In V2 + cosa + Aand V =tan"!(sinz) + B

2\/§ \/i—cosx

Then the general solution of the equation is

\/§+c0sx
\@—cosx

y = Acosz+Bsinz+ cos z+(sin ) tan ™! (sin z),

! In
2v2
with A, B € R.

The general solution of the homogeneous equation is y = Ae ™2 cos -+
Be ?*ginz, with A, B € R.

Using the variation of constants method, the general solution of the
equation is written as y = Ue ™% cosz + Ve ** sinz, with

1 1
U' = *§€4$ cosh(2z)sin(2z), V' = e cosh(2x)cos? z = 1(661+62z)(1+COS(2$)).
Then

U= _iem (= cos(2z) + 3sin(2x))—

%0 ie% (—2cos(2z) + sin(2z))+ A

32

and

1 . 1 4. 1
V= ~51 (% + 362z)—%661 (3cos(2z) + sin(2x))—1—662$ (cos(2z) + sin(2z))+B
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13) The general solution of the homogeneous equation is y = (Az +
B)e3*, with A, B € R. )
The differential equation is v’ —6y’+9y = sinh® 2 = 2 (€3 —3e® +3e7" — e737).

3 3 1 _.
—— ¥ — — ¥ — —e 3% 4 — 1€ is a particular solution of the
32 128 288 48 o
equation. Then the general solution of the equation is
3 3 1 1
= (A B 3z _ Y x —x —3x 3T
y=Wet Bjer = o~ 3¢ " T st T

with A, B € R.
The general solution of the homogenous equation is

Ye = (az +b)e”, a,beR

Let z=e %y, y —2 4y=e"2 =e"(x+cosa) < 2z =+ cosz.
3

Then y, = (% —cosz)e” and y = e”(ax + b+ % —cos ).
The general solution of the homogenous equation is

V3

Yo = e*%“’(acos(?x) + bsin(Tx)), a,beR
Yp = sinz and
y= e*%z(a cos(?x) + bsin(?m)) +sinz, a,beR.
The general solution of the homogenous equation is

ye = ae” +be**, a,beR

2

yp = —xe® + (527 — x)e?”

and
T 1 2 2z
y=(a—1x)e +(§:z: —x+be*, abeR.
2-16| 1) Let h: R — R be the function defined by:

h(z) = sinx/ g(t) costdt — cosa:/ g(t) sintdt.
0 0
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i W (z)= sm:c/ ) sin tdt—|—cos:z:/ g(t) costdt = / g(t) cos(z—
0 0
t)dt. B (z) = g(x) — h(z), which proves that h fulfills the equa-
tion (2.13).
x x
ii. h(z) = / g(t)(sinz cost — coszsint)dt = / g(t) sin(z — t)dt.
0 0

xT T+
ha)+h(z+7) = /O g(t) sin(z — £)dt — /0 g(t)sin(z — £)dt
T+
= - / g(t)sin(x — t)dt

= / g(s + ) sin(s)ds.
0

Since g > 0, h(x) + h(x +m) > 0.

2) i. The general solution of the homogenous equation is y = a cos z+
bsinx. By the variation of constant method any solution f of
(2.13) on R has the form

f(z) = acosz+bsin z+sinx / g(t) costdt—cos x / g(t) sintdt = a cos z+bsin
0 0

which proves that f(z)+ f(z +m) >0, Vo € R.

ii. Let F: R — R be a function of class C2 such that F" (z) +
F(z) > 0. We denote g = F + F. Since g > 0 and F is a
solution of the differential equation y// +y = g with g > 0, then
F(z)+ F(x+m) >0, Vz € R.

Let E}, be the vector space of complex functions of class C* defined on R
and let o # 8 € C. We consider the linear map D: Fs — FEj defined by

D(y) =y" — (e + By + apy.
1) « and B are solutions of the characteristic equation. Then the kernel
of D is vector space generated by e®® and ef®.
2) f a =i= -3, D(y) =y +y. The solutions of y” +y = €'* are
{ae'® + be~i* — Zeir g b e C}.
3) The general solutions of the homogenous equations are ae'® + be™'*,

1 .
with a,b € C. By the variation of the constant, 3 tan~!(cos z)e'® +

1 V2 +sinz
Q\f V2 —sinz

) e~ '" is a particular solution.
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We consider the following differential equations

and

1)

y —y=1 (5.11)

Yy +y=1 (5.12)

The general solutions of (5.11) are y = —1+ae®+be*, with a, b € R.

The general solutions of (5.12) are y = 1 4+ acosx + bsinz, with
a,beR.

If y(0) = a, y'(0) = B, the solution of (5.11) is y = —1 + <oz 4
%e_z and the solution of (5.12) isy = 14 (a — 1)cosz + (8 —
1)sinz.

a) the bounded solutions on R™ for the differential equation (5.11)
are y = —1 4+ be™ ", with b € R and the solutions of the differential
equation (5.12) are all bounded.

b) the even solutions on R for the differential equation (5.11) are
y = —1 4+ acoshz, with ¢ € R and the even solutions on R for the
differential equation (5.12) are y = 1 + acosz, with a € R.

Let y = —1 4+ uwe® + ve™™ be a solution of the differential equation
(5.11). y(0) =y(a) =0 <= u+v—1=0and —14+ue*+ve * =0,
for a # 0. This system is Crammer and has a unique solution.

Let y = 1+ wucosz+wvsinx be a solution of the differential equation
(5.12). y(0) =y(a) =0 <= w =1 and vsina = 1 — cosa. This
equation has solutions if and only if a # (2n + )7, n € Z.

a) Let A € R, f and g two differentiable functions on R* such that
'+ Af <g. Weset h(z) = / eMg(t)dt.

0
Compute the differential of h in term of the function x — e*® f(z).

Deduce that V z € RY, f(z) < e **f(0) + e **h(z).
b) Let ¢ be function twice differentiable on RT such that

VteRT, ¢7(t) —p(t) < 1.

Let ¢ be the solution of (5.11) such that ¥(0) = ¢(0), ¥'(0) = ¢'(0).
Prove that V ¢t € RT, ¢(t) < ¢(t). (Hint: we can use the question
a) in the case where f = ¢’ — ¢ and A =1).

Let p(t) =1 —e~t. verify that ¢” + ¢ < 1.

Let 1 be the solution of (5.12) such that ¢(0) = ¢(0) = 0 and
' (0) = ¢'(0) = 1. Do we have p(t) < (t),VteRT?
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Consider the differential equation: 22y — 2zy + 2y = 0.
If z = e’ and z(t) = y(e?), the differential equation is equivalent to
z —32' +22z=0. Then z = ae’ + be? and y = ax + ba?.

Consider the differential equation: 2y — zy +y = 0.

If z = et and z(t) = y(e?), the differential equation is equivalent to
2z —22 +2=0. Then z = (at + b)e! and y = (alnx + b)x.
Consider the differential equation: z2y" — zy + 10y = 0. If z = ¢!
and z(t) = y(e'), the differential equation is equivalent to 2 — 22’ +

10z = 0. Then z = z(acos(3Inz) + bsin(31nx)).

Consider the differential equation: :czy” +azy' +y =0, z > 0.
If z = e' and z(t) = y(e?), the differential equation is equivalent to
z +2z=0. Then z = z(acos(lnz) + bsin(lnx)).

Consider the differential equation: 2x2y” +5zy +y =0, z > 0.
If z = ¢! and 2(¢) = y(e?), the differential equation is equivalent to
2z +32'+2=0. Then z = ¢ + b\/x.

If z = e® and 2(t) = y(e'). The differential equation is equivalent to
z +2z=0. Then z = acos(f) + bsin(t) and

y = acos(In(z)) + bsin(In(z)).

If x = €' and 2(t) = y(e'). The differential equation is equivalent to
22" 432 + 2 =0. Then z = ae™* + be~ 2" and

Consider the differential equation: 922y~ + 15zy +y = 0.
If z = et and z(t) = y(e?), the differential equation is equivalent to
92" 462 + 2 =0. Then z = (at + b)e~3* and y = (aInz + b)z~3.

y© —5y) —36y" = (DS —5D*—36D2)(y) = D2(D2+4I)(D2—91)y.
Then y = ax + b + ce3” + de ™ 4 hsin(2z) + k cos(2x).

y© — 2y 44" = (DS — 2D* + D?)(y) = D*(D — I)*(D + I)y.
Then y = ax + b+ (cx + d)e” (hx + k)e™*.

Yp = ﬁew + %sinx

Yp = %e% — %cos x.
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Solutions of Exercises on Chapter 3

1] 1)

d 1 B 2(s—1)
ds ((5—1)2+1> T ((s—1)2+1)2

This Laplace transform is valid for s > 1.
2) We have:

L) =~ (L(2eosa)(s)) =~ (L(1 + cos(20)(5))

B d (1 S 1 s2—4
- d(++4)+<+4>
2(s* 4+ 2s% +8)
82(S2+4)2

This Laplace transform is valid for s > 0.
3) We have:

LOE) = o) = 5 (533)

(s+3)*

This Laplace transform is valid for s > —3.
12 5s 12 — 5s

] 2 —_— 2 = — = f O.
4) L (6sin(2x) — 5cos(2x)) Pl Pl erd or s >
5)
L{(sinz —cosz)?} = L{sin®z —2sinzcosx + cos® x}
= L{1 —sin(22)}
1 2
= -~ 0
s 2447 $=

24 4 1 2444545t
6)5{<m2+1)2}=£{x4+2m2+1}:;5+f+,:u

s3 s s
for s > 0.



7) L{e % cosh(2z)} = F(s + 4) where F(s) = £{cosh(2z)} = i

s+4
(s—4)2—4

8) e 57 sin(4x) cos(4x) = %e‘M sin(8z). Then
18

2 (s+5)2 482

9) 6sin(8z)sin(2z) = 3 cos(6x) — 3cos(10xg. Then

. : 5
L (6sin(8x) sin(2x)) = 332 136 332 + 100’
s2+65+9

(sfl)(sz)(erél))'
s2+654+9 16 1 25 1 1 1
="+ = +— :
(s—=1)(s—2)(s+4) 5s—1 6s—2 30s+4
246s5+9 16 25 1
r-1 S — O 2 T -4
G626+~ 5 T6¢ Ty
s 1 3

xT 3 X
) g = e (e ).

s+ 1 s+1
3 - = £(e™ cos(3z)).
) 2310 rirgg Lo eos(2)
4)

Hence £{e™ %" cosh(2z)} = , for s > —4.

L (e”5" sin(4z) cos(4x)) =

1) L7

Then

s2+4s—15 1 2s 6

(s—1)(s2+9) s—1+52—|—9+52+9

S P G WY . S
T os—1 249 249

= —L(e") + 2L(cos(3x)) + 2L(sin(3x)).

—1 4 _ .132631
5) L ((8_3)3> =2

6)
25-3 s+l 1
s24+25+10  (s+1)24+32  T(s+1)2 432
5
= L (26_’c cos(3x) — ge_w sin(3x))
7)
9s% — 125 + 28 _ 7, 2512
s(s?+4) s s24+4

= L(7+ 2cos(2x) — 6sin(2z)).

s2 —
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8)
(s —2)e™*
s2—4s+3
—2)e®
Th -1 (57
en £ (82—4S+3

9)

S

< (Groern)

10)
3s

N

11)

‘Cfl 6723
52 + 125 + 32

)

(s —2)e®
(s—2)2-1
e *L (e** cosh(2z))

L (62(1_1) cosh(2(z —1))H (x — 1)) .

LGS Y |
- 0 ifo<z<1’

1 1 s 1
—L7H— —4

5 ( s+1+52+4 82+4)
1

)

1., (d 3

= 3t <dss2+32>

1l (d ..

= —2£ (dsﬁ(sm(&v)))
x
2

1 -1 - —
= 5/3 (L(zsin(32))) =

—2s
_ -1 e 1l
= £ ((s+6)2—4)_2£

e @2 sinh(2(z — 2))H (x — 2)

(e72*L(e” " sinh(2z))

1e7 6@ sinh(2(z — 2)) ifx>2
0 ifo<z <2

I
A~ ]

12 —1 S — —1 S — —3x 9
) £ <s2+6s+13> E\Grarga) —¢ o)
13)
- 7—3s 4 _3(s=4)+5
1 s _ _ 1 s
£ (e 2-ss+w) - F (e (5—4)2+4)

—3L! (e‘sm> - g (e_s(s42)2+4)

3L (L cos(20)) — 3 (7 L(eH sin(20)

= —H(z—1)e*@D (3 cos(2x—2))+;sin(2x—2)))
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14)
P s2+5 _ o (s—2)2+2(s—2)+5
(s —2)° (s —2)°
1 1 5
= £} 2
. (s—z+ @—%2@—2P>
= &* +27e* + ;xQeQI
15)
—1 —3s S _ 1 —1 } —3s 1 1 —3s 1 _ ,—3s S
£ <€ 34—16> = gt (26 s-2732° S127 ¢ 244
= %H(x -3) (ez(“C*B) + e 2@=3) _ 9 cos(2(x — 3)))
16)
1 1 1 1
—1 —7s _ = -1 —ms( =
£ <e st 4+ 1652) 16£ (e (32 24+ 16)>
1 1 .
= 1—6H(9: — ) ((m —7) — 6 sm(4:c)> .

1) f(z) = e 2H(z—1) = e 2 2@V H(2—1). Then L(f)(s) =

s+2
x2, 0<zx<l1
2) fla)=9b5—2, 1<x<2
6, 2<zx
flz) = 2*(Hx—-1)—-H(@x)+ (B —2)(H(xr—2)— H(x—1))+6H(z —2)

= (@ 4z-5)H(x—1)—2*H(z)+ (11 —2)H(x — 2)
(z—1)2?=(x—1)=TH(z —1) —2*H(z) + (9 — (x — 2))H(z — 2).

Thenc(f)(s):eﬂ(%_é_g)_%_ 728(3 512).
3) f(z)=(a® — 62+ 18)H(x —3) = ((x — 3)> + 9)H (x — 3)
Then £(£)(s) = ¢ (55 + 2).
4) f(x) = ((x—3)* +6(z —3) +9) H(x — 3).

L) =¥ (2 + 212,

s3  s2 s
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L(H(x—5)ze %) = %L (H(x —5)(z — 5)676(:675))
+5e730L (H(m - 5)e‘6<x_5))
— —bs 1 — —5s 1 .
= ¢ %00 (s—l—6)2+5e 30 516
L (H(x — Z> cos(2x)) =L (H(:I: — Z)Si (2(x — Z))) = —e_%sﬁ;
L(H(x—3)(z*—z+4) = L(H(z-3)((z—3)°+5(z—3)+10))
(10 5 2
= € 3 (8 + sz + 83> .
flz) = (2z—-2)(H(z)— H(z—3))+ (10 — 22)(H(x — 3) — H(x — 6))
= (2z—-2)H(z)—4(x —3)H(x —3) +2(x — 6+ 1)H(z — 6).
Then, using the Laplace transform formula: we have:
L(f)s) = L((2xz—2)H(x)—4(x—3)H(x—3)+2(x—6+ 1)H(xz —6))(s)
2 2 e 3s e b 2
= gy e et
= 332(1 —e 3N (1 —s5—e3(1 +5))

The general solution of the homogeneous equation y/ +3y =0is
y = e 3%, with A € R. Using variation of parameters method, y =

Ue™3%, the general solution of the initial value problem y, +3y = e?*,
. 11 —3x 1 2x

y(O):—2lsy:—Ee —i—ge .

Using Laplace transforms, we get:

1 11 11 2
Y4243 = — = YV =- 1 _ .
5 +1j = 55—2 5543 s+3
Y= —36_33: + g€2x.

The general solution of the homogeneous equation y/ + 4y = 0 is
y = de % with A € R. Using variation of parameters method,

Then
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y = Ue™**, the general solution of the initial value problem y, +4y =

78 1
sin(3x), y(0) =5 is y = %e*“ + %(73 cos(3z) + 4sin(3z)).
Using Laplace transforms, we get:

5 3 1 3 s—4

V=544 = ——— = V = o ~5F - Th
s 78+ %2+9 ) 3+4+25s+4 2%Bs2+9
Y= %6741: - cos(3z) + ~55 sin(3x).

The general solution of the homogeneous equation y, +y =0is
y = Xe™®, with A € R. Using variation of parameters method, y =
Ue™", the general solution of the initial value problem y +y = ze”,

1 1
y(0)=—-1lisy= —1671’ + 1(23: —1)e”.

Using Laplace transforms, we get:
1 3 1 1
Y+14+Y = —s5 <= YV =— - .
e =Ty I+ A1) 2E-1)
1
Then y = —Zeﬂ” - Zez + imez.

The general solution of the homogeneous equation y” 4+ 9y = 0is
y = acos(3z)+bsin(3x), with a.b € R. Using variation of parameters
method, y = U cos(3z) 4V sin(3z), the general solution of the initial
value problem y + 9y = 2, y(0) =0, y 0)=1lisy = f% cos(3x) +
% sin(3z) + 2.

Using Laplace transforms, we get:

2 2 2 1
Y - 149y = 2 — Y = i
S

2% L T
0s 05249 s2yg -em

2 2 1 .
Y=57% cos(3z) + 3 sin(3x).
The general solution of the homogeneous equation y” +9y =01is
y = acos(3z)+bsin(3x), with a.b € R. Using variation of parameters
method, y = U cos(3z) 4+ V sin(3z), the general solution of the initial
value problem 3" + 9y = 5cos(3z), y(0) = 0, ¥y (0) = 0is y =
Sxsin(3x).

Using Laplace transforms, we get:

Y 49V =5 e V=5
STt 249 (s2+9)2
d 1

. s 5 .
Since PR _2(52 o then y = 6% sin(3z).

The general solution of the homogeneous equation y” + 2y, +y=0
isy = (ax+b)e” ", with a.b € R. y = 3z — 6 is a particular solution,
then the general solution of the initial value problem y” + 2y/ +y =
3z, y(0) = 0,4 (0) =0is y = 3(x 4+ 2)e " + 3(x — 2).

Using Laplace transforms, we get:
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3 3 6 3 6 3
N?2Y =" ey =—°> "4+ 7 4 7
(s+1) 52 s2(s+1)2 sd‘_s2_|—s—&—1_|—(s—i—1)2

Then y = —6 + 3z + 6™ + 3xe™".

4-2| 1) Using Laplace transform of both sides, we get:

1 1 S 1
Y-14+Y = .
5 + S+1+8—1+82+1+82+1
Then
1 1 1 1 1 S
Y(s) = - -
(s) ( +1)2 +2(571 s+1)+(s+1)(52+1)
1
_’__
(s+1)(s2+1)
1 1 1 1

25+ T r1Z oo e

The solution of the differential equation is:
1 —x —x 1 T :
yzae +ze —‘r§€ +smz.

2) By taking the Laplace transform of both sides of the differential
) s 1 1
ti t: sY —4—-2Y = — . Th
equation, we get: s 5+52+1+572+s+1 en

4 5 s 1 1

Y(s) = +

s 2 52 G ) T2 T D62

217 5 2 s 1 1 1 1 1

30(s—2) 2s 552+1+552+1+(s—2)2 3541
and

)= Wlas 52 e
xr) = —e€ — — — — COSXT — S Te — —€
y 30 275 5 3

3) Using the Laplace transform of both sides of the differential equa-
tion, we get:

(s+1)Y -2 = LPBH@x—-1)+e"H(x—1)+ H(x—1)cosz]

5, e 7 _gsinl +cosl
—e 7+ +e

s s—1 s2+1
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Then
2 oe~* e~ (=) sinl +cosl)e™*®
Y(s) = + + ( 5 )
s+1 s(s+1) (s—1)(s+1) (s+1)(s2+1)
2 N Se™s e ® N le =D 1e=G=D  (sinl+cosl) e~*
s+l s s+l 02 s—1 2 s+1 2 s+1
(sinl+cosl) se™®  (sinl+cosl) e~ *
2 s2+1 2 s24+1
and

y(x) =4e ™ +5H(x — 1) — 5H(xz — 1)6_(1»_1)_

Using Laplace transform of both sides of the differential equation,
20 3 4 1
we get: s + S > then s(s+5)+s+5 s T 515

and y = —e™ % 4 4.

Using Laplace transform of both sides of the differential equation,
1 1 1 11 1
then ¥ = - - —

, d
=2 55—2 b5s+3 ¢

we get: sY + 24 3Y =
o 1 2z 11 —3x

y=ge e

Using Laplace transform of both sides of the differential equation, we

4 1 1 1
get: sY4+4—Y = Le3%. ThenY = — e (24 = =
s s—1 s 82 s-—1

and
y=—4e" 4+ (e —x —x)H(x — 3).

Using Laplace transform of both sides of the differential equation,

5
t: s°Y —54+9Y =0, then Y = ——
we get: s + , then 219

Using Laplace transform of both sides of the differential equation,
2s 1 1
t: s°Y —2s—9Y =0, the Y = = d
we get: s s , the 29 S_3+S+3an
y = 2cosh(3x).
Using Laplace transform of both sides of the differential equation,

2 2 2 2 1
we get: s2Y —149Y = = then Y = 5 s
S

and y = 2 sin(3z).

52 -9 7@7§sg+9+52+9

2 2 1
and y = g 9 cos(3x) + 3 sin(3x).

9
Using Laplace transform of both sides of the differential equation, we
55 55 5 s S
t: s2Y49Y = — thenY = ———— = ° (> %
get: 87X Zr1 o (s2+1)(s2+9) 4<s2+1 52+9>

and y = 2 (cos(z) — cos(3x)) .
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11)

12)

13)

Using Laplace transform of both sides of the differential equation,

2 1 2
t: s2Y —144Y = —— then Y =
we get: s + 24 en s2+4+(s2+4)

5 and

1
y= gsin(Qx) — 3% cos(2x).

Using Laplace transform of both sides of the differential equation,
1 s
L2 _ _
we get: s°Y — 1+ 9Y = %5, then ¥ = 219 + EFTE and

1 1
y=3 sin(3x) + g% sin(3x)

Using Laplace transform of both sides of the differential equation,
1
.2 _ 2 _
we get: s Y —-1+2sY +5Y = m,thenY— m+

1 1
Y= ge*‘” sin(2z) — 1—6xe’w sin(2z) — gxe*”” cos(2x).

This is because

. d b 2b(s —a

L(xe*sin(br)) = 0 CEmEEE = o (a)2 _|_)[)2)2
. 2bs B 2ab
= ((S . a)z 4 b2)2 ((S _ a)? + b2)2

and
ax - d s—a B (S—a)2—2b2
E(xe COS(bCﬂ)) - *%(8 _ a)2 +52 ((5 _ a)g + b2)2
1 202

(s—a)?+b2 ((s—a)?+02)2

We deduce that:

1
2b3£71 |:((s—a/)2—|—b2)2:| = e Sln(bx) — bxe®” COS(bl‘)
and
203 L1 |:((S)82<|>l72)2:| = ae sin(bx)—abre®® cos(bx)+b*re™ sin(bx).
—a
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16)
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Using Laplace transform of both sides of the differential equation,
—4s
L Q2 _ € . s+1
WegetSY—S+2Y—1+5Y— s ThenY—m+
e 4s s+1 e e (s+1)+1

nd

S(Gr1P+4) (11244 Bs 2 (510244

1 1 1
y=e " cos(2x)+gH(x—4)—§e_“’ cos(2x)H(x—4)—Ze_”” sin(2z) H (z—4).

Using Laplace transform of both sides of the differential equation,
—3s

we get: s2Y — 25 —2Y +2—3Y = S Then
v — 2(s—1) N e~ 3s 1 N 1 6_35+ e~ 3s N
C(5=3)(s+1) s(s—3)(s+1) s—3 s+1 3s 12(s—3)
and ) ) )
3x —x 3x —x
= S - H(x —
y=e"+e +( 3—|—126 —|—36 > (x —3)
Using Laplace transform of both sides of the differential equation,
2 s+1
we get: s2Y —142Y +5Y = + e™. Then
& GGr12+4 (st1)2+4)
1 2 1
Y — _|_ S + s

Gr1Zid  (Gr1Z+aZ  (sr12rae’

and
5 .. 1, 1,
y=ge" sin(2z) — 7% cos(2x) + 2%¢ sin(2x)

Using Laplace transform of both sides of the differential equation,
4 1 .,
we get: s°Y —s+Y —1—-2Y = 714-*635. Then
S

1 4 1 .
-1 D12  serDe-D°

S TN NS O DS B
= 3 (=4 = s
s+1  (s+1)2 s 2s—-1 2s+1

Y =

and
y=e *+2xe *+ (coshz — 1) H(x — 3)
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18) Using the Laplace transform of both sides of the differential equa-
tion, we get:

—2s

$Y (s) = sy(0) — ' (0) +2(sY (s) — y(0)) +5Y (s) = —

—2s
Then Y(s) (s +2s+5) =s+2+ c pt Solving for Y(s), we find:
s+ 2 _9 1
Y(s)= -2 s 1
() 32+23+5+e s(s2+2s45)
s+2 s+1 1

We have d

22545 (511244 sriEga™

1 S+1 R —1 2 R
|:(S+1)2+4:|6 cos(2z) and £ [(5—1—1)24—4]6 sin(2z).
R gy S S CE S VR )
s(s2+2s+5) 5 s (s+1)2+4
1 o, (1 s+1 1
= —E€ _— + .
5 s (s+1)244  (s+1)2+4
1 s+2
-1 |, —2s — —(z—2
L {e (552—1-284-5)] = H(fo)[lfe( )(cos 2(z — 2)

—|—;sin2(x—2))] .

The solution y(x) to the initial-value problem is

. - 1 v
y(x) = e *cos(2x)+ 62 sin(2x) + gH(x —2) [1 —e @D cos 2(z — 2)
e_(I_Q)
+ 5 sin 2(x — 2)

19) Taking Laplace transforms,
Y —4s —25Y +8 -3V =0 <= (52 —25—-3)Y =458

s—2
(s+1)(s—3)

3 1
— Y= .
s—|—1+s—3

Then y = 3% + 3e~*.
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Taking Laplace transforms, it follows that

5 ) e~ TS
(s°+4s+13)Y —s—4=—-2L[H(x —m)sin(3(x — m))] = “2 19
s+4 - s+ 2 2
s2+4s5+13  (s+2)2+9 + (s+2)2+9’
L7Y(Y1) = e=2*(cos(3x) + 2 sin(3x)). Let also

6e~ TS

Let Y7 = then

Y =
2 (s249)(s2+4s+13)
_ ie‘” s 1 s+2 _ 1
20 $2+9 $2+9 (s+2)2+49 (s+2)2+9
Then,
1 3 [ 1.
L7(Y,) = %H(t*’f() cos3(:cf7r)f§sm3(x77r)f
] 1
e 2™ cos3(x — ) — 5672(907#) sin 3(x — 7T):|
3 H(t — ) |~ cos(32) + % sin(3a)+
= — — — = sin
50 T _ cos(3z) + 3 sin(3z
, 1 "
e 2= cos(3z) + 56_2(“‘_”) Sin(3m)]
and
—2x 2 . 3
y = e cos(3z) + 3 sin(3z) | + Q—OH(JC — m)[— cos(3x)

+% sin(3x) + e~ 2(@=™ <cos(3x) + ;Sin(3x)>}

We begin by taking the Laplace transform of both sides to achieve

L [y'} + Lly] = L(e™% + €” 4 cosx + sinx).

1 1
We know that L(e™*4e” +cosz+sinz) = + TR
. s+1 s—1 s2+1
R Denote Y'(s) = L[y], then
1 1 1,1 1 s
Y(s) = - -
() s—|—1+(5+1)2+2(5—1 5+1)+($+1)(52—|—1)

1
+—

(s+1)(s*+1)

_ L S N 1
o 2(s+1) 0 (s+1)2 0 2s—1)  s2+1
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The solution of the differential equation:
1 —x —x 1 T :
Yy = 56 +xe T+ 56 +sinx.

2) By taking the Laplace transform of both sides of the differential

. ) S 1 1
equation, we get: SY_4_2Y:g+32+1+3_2+3+1'Then
4 5 s 1
Y6) = 5 5o T o) T o2e
1
(s+1)(s—2)
4 ) 1 1 2 1 1-2s5s+1
i ) 52‘5) 55-2 5 241
1 1 1 1 1
TG 22 T35 2 3541
27 5 2 s 1 1
- 30(3—2)_?5_532+1+532+1
1 1 1
+(5—2)2755—1—1
and
y(x) = 23—10762” - g — g cosz + %sinm + ze®® — ée‘”

3) Using the Laplace transform of both sides of the differential equa-
tion, we get:

2 s

s°Y(s) —s+1—-2(sY(s) — 1) +2Y(s) = .
s—3 n s

(s—=12+1 (2+D({(s—1)2+1)

Then Y (s) = . Solving for Y (s),

we find:

s—1 2 +1 s 2 1
(s—1)2+1 (s—1)2+1 5s2+1 5s2+1
1 s—1 3

Y(s) =

5(8—1)2+1+5(s—1)2+1'

1 2 1
y = e cosxr—2e’sinx + gcosx— gsinx— ge”” cosz + geg’sinx

—efcosx — —e*sinx + 1cosx— gsinaz
5 5 5 5
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4) Using the Laplace transform of both sides of the differential equa-

tion, we get:
(s+1)Y—2=L[5H(zx—1)+e"H(x — 1)+ H(x — 1)cosz].

1 —(s—1)
Since L[H(x —1)] = —e°, L[e"H(x — 1)] = ¢ 7 and
s s —
_ssinl +cosl
L[H(z —1)cosz] =e i1 We have:
2 Se~® e~ (=) (sinl 4 cosl)e™*

Y(s) = sH1 56D T GoDeAD) | GrUE D)
2 Bet e 1e"G7D

5—5—1Jr s s+1+2 s—1
le=G=D  (sinl4cosl) e~

BT 2 s+1
(sinl+cosl) se™* +(sin1+cos1) e *
2 s2+1 2 s2+1

We have £7! [ 4 } =4e ",
5

£t [56_3] =5H(z—1)and £7! [e
s s+1

Then

—S} = 5H(z —1)e~ @1,

y(x) = 4e ™ +5H(x — 1) — 5H (z — 1)e~ =71,

Using the Laplace transform of both sides of the differential equa-
tion, we get:

—2s

$”Y (s) = sy(0) — ' (0) +2(sY (s) — y(0)) +5Y (s) = —

6—23

Then Y(s) (s> +2s+5) =s+2+ . Solving for Y'(s), we find:

s
$+2 —2s 1

Y(s)= -T2 -
() 52+23+5+e s(s24+2s+5)

s+ 2 s+1 n 1
= aln
$24+2s+5 (s+1)2+4 (s+1)2+4

1 s+1 I -1 2
L {(3—1-1)24-4} = e “cos(2z) and L [(5—1—1)24—4

We have d

] = e " sin(2z).

1

=25 16_%(1 (s+1)+1>:1 _25(1 s+1

s(s2+25+5) 5 s (s+1)02+4) 5°

E_(s+1)2+4+

(s+ 1
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1l Zas (1 s+2
‘1[62 <_+2+5)] = H@-2)[

—e~(=72) (cosQ(x -2)+ % sin 2(z — 2))].

The solution y(x) to the initial-value problem is

—x

y(z) = e “cos(2z)+ ¢

sin(2x) + %H(x -2)1

—(@-2)

—e D cos 2(x — 2) + sin2(z — 2)]

6) We take the Laplace transform of each member of the differential
equation:
L(y') +3L(y) = 13L(sin(2t)). Then (s +3)Y(s) =6 =6 + ———
6 26 6 —2s5+6
Y(s) = = d
() S+3+(8+3)(S +4) s+3+ 214 o
y=6L"Y( —2L7Y( V6L ) = 6e 3" —2cos(2t)+

3sin(2t).

26
2+4

5+3 2+4 s2+4

4-4| 1) We begin by taking the Laplace transform of both sides to achieve
L [yl} + Lly] = L(e™% + €” 4 cosx + sinx).

1 S
5—|—1+s—1+52—|—1+

We know that L(e™*+e” +cosz+sinz) =

1
o Denote Y (s) = L[y], then
1 1 1,1 1
Y(s) = +5( )+ o7

(s+1) 2's—1 s+17 " (s+1)(s2+1)

1
_|_—

(s+1)(s2+1)

B L S SN
o 2(s+1) (sH+1)2 0 2s—1)  s241

The solution of the differential equation:

1 _, . 1
y= 56_"L +xe™ ¥ + iel + sin x.
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2) By taking the Laplace transform of both sides of the differential

. ) s 1 1
equation, we get: SY_4_2Y:;+s2+1+s—2+s+1'Then
4 ) S 1
Yis) = s—2+s(s—2)+(3—2)(52—|—1)+(s—2)2
1
(s+1)(s—2)
_ 4 ) 1 1 2 1 1-2s5+1
BT s_z‘s) 55275 211

+1 1 1
(s—2)2 3s—2 3s+1
) 2 s 1 1

30(s —2) 2s 5211  5s2+1

+(s—2)2_§s+1
and
)= W as 52 LU g
xr) = —e€ — — — — COSXT — S xe — —€ .
y 30 25 5 3

3) Using the Laplace transform of both sides of the differential equa-
tion, we get:

s2Y (s) — s+ 1—2(sY(s) — 1) +2Y (s) =

s2+4+1°

s—3 s

O N e R EE [ (CES VY

. Solving for Y (s),

we find:

s—1 2 +1 S 2 1
(s—1)24+1 (s—12+1 5s2+1 5s>+1
s—1 3

1
51241 T 5(-1)2+1

Y(s) =

. 1 . .
y = e cosxr—2e’sinx + gcosx— gsmx— ge”” cosz + geg’smx

—efcosx — —e*sinx + 1cosx— gsinaz
5 5 5 5
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4) Using the Laplace transform of both sides of the differential equa-

tion, we get:
(s+1)Y—2=L[5H(zx—1)+e"H(x — 1)+ H(x — 1)cosz].

1 —(s—1)
Since L[H(x —1)] = —e°, L[e"H(x — 1)] = ¢ 7 and
s s —
_ssinl +cosl
L[H(z —1)cosz] =e i1 We get:
2 5e~* e~ (=1 (sinl+cosl)e™*

Y =
) = TGy T o0 D T U1
2 Sem®  bem® le (7D

s+1+ s s+1+2 s—1
lemt=D  (sinl+cosl) e

2511 T 2 s+ 1
(sinl +cosl) se™* Jr(sinl—i—cosl) e "
2 241 2 s2+1

|s+1
-]_ 6_(8_ )
-1 = _ o
L 2 5-1 } 5¢ H(zx—1)
[1e (=D 1
L7 = =——e " H(x -1
275+ } 2°¢ (@-1)
-1 (sinl+cosl) e—* _ (sinl + cos 1) e (2 — 1)
L 2 s+1 2
_ a_1|(sinl4cosl) se® | (sinl+4cosl) B
L [ 5 2l 2 cos(z —1)H(x —1)
1 [(sinl+cosl) e™® ] (sinl+cosl) .
L { 5 pop 5 sin(z — 1)H(x — 1)
Then
1
y(z) = 2 4+5H(z—1)—5H(x—1)e @1 4 S¢ H(z 1)

(sinl + cos 1)

5 e T H(x —1)

1
—ieferQH(x -1+

sin 1 1
_w cos(z — 1)H(z — 1)

sinl 4 cos1
L i1+ cos1)

5 sin(x — 1)H(z — 1).
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5) Using the Laplace transform of both sides of the differential equa-
tion, we get:

6—25

s2Y (s) — s +2(sY(s) — 1) + 5Y (s) =

—2s
Then Y(s) (s> +2s+5) =s+2+ c . Solving for Y (s), we find:
s
$+2 —2s 1

Y(S)252+28+5+e s(s2+2s+5)

s+ 2 s+1 n 1 and
= 1
2+2s4+5 (s+1)2+4 (s+1)2+4

1 2
£t {H} = e % cos(2x) and L7 [

We have

] = ¢ " sin(22).

(s+1)2+4 (s+1)2+4
e=28 _ 16_23 1 (s+1)+1
s(s?24+2s+5) 5 s (s+1)2+4

_ 16_2& 1 s+1 n 1
5 s (s+1)24+4 (s+1)2+4)°

1l Zas (1 s+2
‘1[62 (_—M—%)] = H@-2)f

—e~ (=72 (cos2(x -2)+ % sin 2(z — 2))].

The solution y(x) to the initial-value problem is

—x

sin(2z) + %H(m —2)[1

e_(a"_Q)

ylx) = e ¥cos(2z) + ¢

—e D cos 2(x — 2) + sin2(z — 2)]

6) We take the Laplace transform of each member of the differential

equation:
26
(S+3)Y(S6)—6:6+§éﬁ,hence6 , 6
—2s +
Y(s) = = d
(s) s+3+(s+3)(32+4) s+3+ s2+4 0
y = 6L (——) — 2L () 6L ()
s+3 524+ 4 5244

= 6e 3" —2cos(2z) + 3sin(22).
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7)

10)

We take the Laplace transform of each member of the differential

equation:

Ly ) =3L(y)+2L(y) = L(e~**). Then Y (s) =
16 25 1

dy=—""¢® “Y 2z o —4x.

and y 5 e’ + 5 e + 3 Oe

We take the Laplace transform of each member of the differential

equation:

52+ 6s+9
(s=1)(s—2)(s+4

25 +5 2 i i i
Y(s) = PEEIE + Go3)p and y = 237 + 11ze3® + Laled.
L(f(x))= —ng_le*s. Then sY (s) —3—2Y(s) = —s,f’j_l e % and

3s 3 6 s 3 1
Y(s) = 3— R [ L
(s) s—2< s2+1e> s 2 52410 524 1°
£t (532) () = 3e?®, L7} (%ﬁe“*) (z) = Scos(z—1)H(z — 1),

3okre) (@) = Esina — DH( - 1).

—S8

2z 6 3 .
ylx) = 3e* + 5 cos(r —1)H(x —1) — R sin(x — 1)H(z — 1).

Taking Laplace transforms of the differential equation, we get

1 S 1

2

1)Y(s)—s = —=——.Then Y (s) = .
(s°+s+1)Y (s)—s 21 Lhen (s) 32+s+1+(32+3+1)(32+1)

s s s—&-% 1 %\/g

Shstl s+ T (+2+ GV VB(s+3)2+ (V3P

Finding the inverse Laplace transform. Since

S B s S—I—% 1 %\/g
s2+s+1 (s+3)24+%  (s+2)2+(3v3)?2 V3(s+1)?

we have

S SR T U PO NN I T
L {32—}—5—1—1}6 2 cos(2\/§9:) \/ge 2 51n(2\/§x).

Also, we have

1 s+1 s

(s24+s+1)(s2+1) 24+s+1 s2+1
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1
s+s+1 (s+3)2+3
Then

s2+s+1 V3

1 1 o s 1 1
£ {(52+5+1)(52+1)}_£ {52+s+1}+£ {52—|—s+1

We obtain )
y(z) = 237 cos(ix/gx) — cos(z).

(a) Using the Laplace transform, L(y') = sY —a, L(y") = s*Y — as —

b+2 b
b.Then (s> +3s+2)Y =as+ (b+3a) < Y = —:_1& - i;
s s
Then y(x) = (b+2a)e™* — (b+ a)e ",
b
M) (s> +s5+1)Y =as+ (b+a) — Y = as + ( +?f) . Then
(s+3)2+ (%)
y(z) = ae” 2 cos(?x) + ﬁ(b + 2)6*5 sin(?x).

(c)
y +2y +y=0, y0)=a, y(0)=0,

as+ (b+ 2a) a

2
2 1)Y = b Y = =

(s°+2s+1) as+ (b+a) = 1) s+1+

b
ﬁ. Then
(s +1)2

y(x) =ae "+ (a+ b)ze .
(d) (2+ 1)V = Le=5, then ¥ = -~ Then
s o582+ 10

y(z) = /Ow sintH(t —1)dt = (1 — cosz)H (z — 1).

) 1 3 6 6
(e) SSY7S2+Y:€78 (8+82+s3+84)Then

. 1 3 6 6
Y= <s3(3—1) + st(s—1) + $2(s—1) + 56(3—1)>‘

1 2 1
5, and L7 {} = 3" sin(ix/gsc).
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(g) Using Laplace transform, we get

L) () =590~/ O1+3(L ) (5)—p(O)+2L)(s) = o+,
(% +35+2)L(5) () = (+3y(0)+9/ O+ 3 = 5(s+3)-3+ 5,
(54 1)(s + 2)L(y)(s) = 55 + 12 + —2;’: f
5s+ 12 5s — 5
L) = e T Gr e )
7 2 5 3 2s+1

s+1_s+2_s+1+s+2+32+1

o2 1 s Y
s+l s+2 s24+1)  $2+1
= 2L(e)(s) + L{e ) (s) + 2L(cos(x))(5) + L(sin(z))(s)
= L(2e7" 4+ e 2" 4 2cos(x) + sin(x))(s).
So the solution:
y=2e""+e 2 4 2cos(x) +sin(x).
(h) Taking Laplace transforms, we get

SL) - sy(0) — ' (0) + L(y) = 2

S

(2 + 1)L(y) — 25 — 4 = 46; ,

25 +4 4e7 7
L(y) = .
2 s2+1 - s(s?2+1)

! ! ° _ and L(2cos(x) + 4sin(x))(s) = 25t 1

s(s2+1) s s2+41 241
L(H () = e ™ L1)(s) = T,
L(H(z —m)cos(x —m)) =e " L(cos(x))(s) = ;—:ji
So
y = 2cos(x)+4sin(z)+4H(x — ) —4H(x — ) cos(xz — )

(
() +4H(z — 7))(1 + cos(x)).

Then y = 2 cos(z) +4sin(z), for x < m and y = 446 cos(x)+4 sin(z)
for x > .

= 2cos(x) + 4sin
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(i) sY(s)—sy(0)—y'(0)=5(sY (s) —y(0)) =6Y (s) = (s*=55—6)Y (s) —
S+5:373+§' Then

st =553+ 75242 1 5 151 15 235
$3(s+1)(s —6) 3s3  18s2 108s T7(s+1) 756(s—6)
—_22+5£_E+E6*W+§66w
O R TR T I 756

(j) Using the Laplace transform of both sides of the differential equa-
tion, we get:
2y (s) — s+ 1—2(sY(s) — 1) + 2V (s) = ———.
PV (5) =5+ 1= 2(sY (s) = 1) +2¥ () =
5s—3 s

Then Y(s) = 1 T @ D =P 1 1)

. Solving for Y (s),

we find:

s—1 2 1 s 2 1
Go12+1 (-12+1 5241 5511
1 s—1 1
TR0+l 512+l

Y(s) =

w

1 2 1
y = e cosx—2e”sinx + F cosT — sinz — —e®cosx + —e®sinx

5 ) )

1
= 56”” cos T — gef’: sinx + 5 COST — sin
(k) Using the Laplace transform of both sides of the differential equa-
tion, we get:
(s+1)YY —-2=L[BH(x—-1)+e*H(x—1)+ H(x — 1) cosz].

1 e—(s—l)
Since L[H(xz —1)] = —e™*, L[e"H(x — 1)] = : and
s 5 —
in 1 1
L[H(x —1)cosx] = 6_3%. We have:
2 Se~® e~ (=) (sinl+cosl)e™*

Y(s) = sH1 56D T GoDeAD) | GrUE D)

2 5e7% e™®  le 7D
s—&—lJr s 7s+1+§ s—1
le=G=D  (sinl4cosl) e®
2 s+1 * 2 s+1
(sinl+cosl) se™®  (sinl+cosl) e~ *

2 sQ-i-l+ 2 s2+1
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7

We have £7! L%} =4de™®

£t |:5€_S:| =5H(z—1)and £7! [ >
S S+
Then

16_3:| = 5H(x —1)e” (@D,

y(x) =4e™® +5H(x — 1) — 5H (z — 1)e~ ==Y,

Using the Laplace transform of both sides of the differential equa-
tion, we get:

—2s
$2Y (5) = 5y(0) =y (0) + 2(sY (5) = y(0)) +5Y (s) = = .
e—2s
Then Y(s) (s> +2s+5) =s+2+ . Solving for Y'(s), we find:
s
5+ 2 9 1

Y(s)= -T2 s 1

() s2+25+5+€ s(s2+2s+5)
s+2 s+1 1

d

We h _
N T 9545 (st 1Zid (srEgd

1 s+1 " 1 2
- - | = 2 - -
{(s 1)2 } e cos( :U) and £ [(s 1)2

] = ¢ " sin(22).

1

s(s2+2s+5) 5°

e2s 128<1 ($+1)+1) 125<1 s+1

s (s+1)2+4 5°

1l o Zas (1 s+2
51[62 <+2+5)] = Ha-2)[

—e(@=2) (cos 2(x—2)+ % sin2(z — 2))]

The solution y(z) to the initial-value problem is

—T

1
y(z) = e “cos(2z)+ ¢ sin(2zx) + gH(x —-2)[1
67(172)
—e D cos 2(x — 2) + sin 2(x — 2)]
L(f(x))= —Sgilefs. Then sF(s) —3 —2F(s) = —sf’j_le*S and
1 3s 3 6 s 3 1
F _ 3 -s - _° 7 ° -s_2_ - _-s
) =53 ( 21" ) s 2 52110 54l
‘Cil (332) = 362t’
L1 (g = 6*5) = Scos(t—1)H(t—1), L7 (%—szlﬂe’s) = 2 sin(t—
1)H(t-1).

y(t) = 3e* + gcos(t -1DH({t-1) - gsin(t —1H(@t-1).

s (s+1)2+4+(s+1)2
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(n) Using the Laplace transform of both sides of the differential equa-
tion, we get:

6—23

$*Y (5) = 59(0) =y (0) +2(sY (s) — y(0)) + 5Y (s) =

—2s

Then Y(s) (s> +2s+5) =s+2+ — Solving for Y(s), we find:

s+2 _9s 1

Y(s)= -T2 -
() s2+25+5+€ s(s24+2s+5)

We b s+2 s+1 n 1 q
e have = an
$24+2s+5  (s+1)2+4 (s+1)2+4

-1 s+1 —x -1 2 —x 3
— | = 2 dL — | = 2z).
{(s—i— 72 +4} e~ % cos(2z) an [(s—i— 1)2+4] e~ 7 sin(2z)
1 (1 (AN L (1 skl 1
s5(s2+2s+5) 5 s (s+1)24+4) 5 s (s+1)2+4  (s+1)2
1 2 1
L1 {625 ( - M)] = H(z—2) [1 —e (@2 (0032(9: —2)+ 581112(1‘ -
s s s

The solution y(x) to the initial-value problem is

—Z

ef(w72)

1
y(z) = e 7 cos(2x)+ sin(2x)+gH(:c—2) [1 —e D cos2(x — 2) + sin 2

Solutions of Exercises on Chapter 4

2 3t sin ¢
/ —
X'(t) = (Sint t2) X(t)+ (COS t)'

1-2| (a) Let y1 =y, y2 =4, ys =y . Then by letting

y1( ) 0 10
X(t) = t , At) = 0 0 1| and
y3 —sin(2t) t 0
0

0 |, the differential equation can be presented by the
e

system of differential equations of first order

X'(t) = A(t) X (t) + F(t).

~+
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(b) Let y1 = y, y2 = y'. Then by letting X(¢) = (Zlgg), At) =
2

0 1 0 . . .
(_ s 2) and F(t) = (sin t)’ the differential equation can be pre-

sented by the system of differential equations of first order X'(t) =
A)X(t)+ F(2).

() A(t) = <_03 _12> and F(t) = <?)

) v — 3y +ty = 3t2. A(t) = (g ;)) and F(t) = <3(22>, Xo = (?)

I 1
We have {x} 201+ 3362, then o) + 3x4 = bxy or x1 = — (2 + 325).
Ty = xr1 — T 5
1 "
LetyzE(ajl—FZ’)xg), Y =z andy =2y +3(5y —v').
1-4
et et et
W = sint cost —sint
sin(2t) 2cos(2t) —4sin(2t)
1 0 0
= ¢€'| sint cost —sint —2sint
sin(2t) 2cos(2t) —sin(2t) —5sin(2t)
= €' (—bcos(2t)cost — 2sin(2t) sint — cos(2t)sint) .
W(0) # 0.

51| (a) Let A — (25 710) ga()) = (A+ 3)(A +5). Then the matrix

is diagonalizable. The vector X; = ( 5 > is an eigenvector of the

matrix A for the eigenvalue A = —3. The vector X = <_11 is an

eigenvector of the matrix A for the eigenvalue A = —5. Then the set
of solutions of the linear system is

_ _ —Tae™ 3! + be~ 5!

(X =ae ™' X, +be™™ Xy, a,beR} = < Sae—3t — pe-5t ) -

(b) A = (_ qa(\) = A2 + 9. The vector X = 1= is an

-3 3)' 1

eigenvector of A with respect to the eigenvalue 3i. Then the set of
solutions of the linear system is

_ {(a —b)cos(3t) + (a + b) sin(3t)
= ( a cos(3t) + bsin(3t) ) » abeER
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(c) A= (f _44>. ga(\) = (A —6)2. Let X, = (é) and X; = (A —

61) X, = (%) The set of solutions of the linear system is

2at 2%
(X = €% ((at + b) X, + aXy) = e ( a;i; > a,be R}

The characteristic polynomial of the matrix A is ga(\) = |4 — M| =

A=1DA+2)—4=X+X-6=(A—2)(A+3).
The vectors X; = (1) and Xy = (_14> are eigenvectors of the matrix

A with respect to the eigenvalues 2 and —3 respectively. The general
solution of the homogenous system is

X =ae® X, + be 3 X,.
If X, = Ue?X; + Ve 3 X, be a particular solution, then U’e*'X; +

—3t
V/673tX2 = (eth = %(4673t —+ €2t)X1 + %(67:% — 62t)X2. Then

U = Let+1) U = f—ge™
5 5, 25
{V’ ) B D R S W
toor 4 s tor 1 s :
Then X, = (ge ~55¢ )X1— (ge + 25¢ )X5. The general solution

of the system is

t 4 t 1
X = D 17 2tX b— = =5t 73tX .
(a—|—5 55 ¢ )e* X1 + ( 5+256 Je 9

This system is equivalent to the following:

{02 o am=2m0-t
We take the Laplace transform, we get:
{sﬁ(m) +2 = L(z)—4L(y) — { (s—1L(x)+4L(y) = -2 .
sL(y)—1 = 4L(z) —TL(y) —4L(x)+ (s+T7)L(y) = 1
Solving this linear system, we get
£y = (55;3)9)2 T s j— 3 (s j—23)2’ y=e1-120)
_ —2s—18 -2 12

L(z) = x=e 3 (=2 —12t)

(s+3)2 s5+3 (s+3)%
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This system is equivalent to the following:

¥ = —dx—2y—t
y = 3zx+y+2t—-1"

We take the Laplace transform, we get:

sL(z)—3 = —AL(z)—2L(y)— % — (s+4)L(x)+2L(y) = —H+3
sC(y)+5 = 3L(x)+L(y)+ 3 -1 —=3L(z)+(s—1L(y) = Z-1-
Solving this linear system, we get
353+ 752 +5—3 1 3 11 1 5 3, 11
L(2) = = -4+ = e 2 ¢y
@) = Fr e+ 16+ £Ts Y710 T3t
—5s3 — 1252 — 25+ 5 1 5 19 1, 5, 19
= = — _— = ——e —f——.
£ly) (s 1+ 2)(s + 1) is+2) 29 15 YT Taf Tl
. . sX(s)—1 = =2X(s)+Y(s),
Taking the Laplace transform of the equations, we get {SY(S) “2 = X(s)—2Y(s),
_ _ (s+2)X(s)=Y(s) = 1,
where X (s) = L{z(x)}, Y (s) = L{y(x)}. then {—X(s) +(s42)Y(s) = 2

The solutions of the linear system of equations on X and Y are X(s) =

s+4 _ 2545
52445437 Y(S) T 85244543

Using the inverse Laplace transform, we have

s+4:%_% 25—1—5:%_’_%
(s+1)(s+3) s+1 s+3 (s+1)(s+3) s+1 s+3’
we obtain
1 1
x(x) = ge*t ——e 3 y(x) = geft + 567375.

3-1| (a) This system is rewritten into the explicit form as follows:

2(t) = —dx(t)—2yt)+et
() = 3o(t)+y(t) +3e
Using Laplace transform, we get
sX(s)—2 = —-4X(s)—2Y(s)+ ?11 . .
{sY(s) _3 = 3X(s)+Y(s) + sig This is equivalent to the
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. S (s+HX(s)+2Y(s) = 24 5 B
following system: {—3X(8)+(S—1)Y(8) _ 3+5§2 Then X (s) =
13 + 15 + and
- - n
s+1 s+2 (s+1)2  (s+2)?
v P18 3 6
Cos+1l 0 s+2 0 (s+1)2 0 (s+2)2
Taking the Laplace inverse operator, we get
x(t) = —13e7 " + 1572 — 2te™" + 6te ™2,
y(t) = 21e™" — 18e7% + 3te™" — 6te 2",
(b) Let X = L(z) and Y = L(y). We get:
sX -1 = 2X-Y+ -4 (s—2)X+Y = 1+
Y +1 = X +2Y + 5% —X+(s-2)Y = —1+4+35%
Then
1 - 1
X _ s—1
(s—2)2+1 S;;j_zl s—2
B s(s—2) n 2 —s5+1
=D =-22+D) (P +D((s—-2)7+1)
11 113(s-2)+9  1-s+1
2s—1 8 (s—2)2+1 8s2+1
a:——let+1—3€2tcost+962tsint—}cost—#lsint
2 8 8 8 8
1 s—2 5
Y _ s—1
(s—22+1| -1 =57t
o (s—=2)(s—s*—1) n s
(2 D)((5—2)2+1)  (s—1D((s—2)2+1)
11 19(s-2)-13 13s-1
0 2s5—1 8 (s—22+1 8s2+1
1 9 13 3 1
yz§et—geztcost—l—ge%sint—gcost—&—gsint
(c) Let X = L(z) and Y = L(y). We get:
sX—-1 = 2X-Y+-L4 (s=2)X+Y = 1+
sY +1 = —X+2Y+ 55 X+(s=2)Y = -1+ 35
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Then
1 a 1
X _ s—1
(s—1)(s—3) |57t s—2
B s(s —2) . 1 B s
(s=1)2(s=3) (s=1(s=3) (2+1((s—1)(s—3))
1 1 +11 1 1 s +1 1
2(s—1)2 10s—3 10s2+1 5s2+1
1tt+11 3t 1coH—1 t
= - - — —sin
2 T 10 TR
—9 s
Y = ! ’ 8755—2171
(s—=1)(s=3)| 1 ST
1t 11 m1 o 2s 31
25— 1 2(s—1)2 10z-3 5s2+1 10s2+1
1et+1tet He?’t 2cost+38nt
= = —te' — —e’t — = — sl
Y7359 7% 10 5 10
(d) {(SQ)XY = 1+ 1
X+ (s=2)Y = 1+ jr
Then
X s(s—2) B 1
o (s—=D({(s—2)2+1) (s—2)2+1
s
73 2
(s24+1)((s —2)2+1))
_ _1 1 § (s—2) _1 1
0 2s5—1 4(s—22+1 2(s—2)2+1
1 s 71 1
4s24+1 45241
1 1 1 1
m:—iet—i—geztcost—§eztsint+zcost—zsint



v - —(s—=2) s(s —2)
(s—=2)2+1) (s2+1)((s—2)2+1)
C(s=D((s-22+1)

—(s—2) 3 s 1 1

G-22+1) 8s2+1 8s2+1
3 (-2 1
8(s—2)2+1 8(s—2)2+1
1 1 1 (s—2) 3 1
T 2s5-—1 2(s—2)24+1 2(s—2)?2+1
1 1 1 1
y:ffeztcostf§cost+fsintffetf—?)eztsint
8 8 8 2
¢ (s—=3)xX+2y = o
(e) X AX+(cost) — {—2X+(s—|-1)y = -1+ 3
1 4 2 1
X = +

s—1 (5—1)2+(s—1)3+52—|—1
x = (t* + 4t + 1)e’ +sint.
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1 1
2y=3x—a' =2 ((t2 + 3t — i)et + §sint ~3 cost) Also we have

2

Y= 1 1 n 3 n 2 1 S n § 1
o 2s—1 (s—1)2 (s—1)3 25241 28241
Then 1 1 5
y = (t* 43t — §)et - §cost—|— isint
dz —  _9op 4 Y
(f) {% , with the initial conditions z(0) = 1, y(0) = 2.
T = T—2

Taking Laplace transforms the system becomes

{sX(s) -1 = =2X(s)+Y(s),
sY(s)—2 = X(s)—2Y(s),
where X (s) = L{z(t)}, Y(s) = L{y(t)}. We get
s+4 25+5
X0 = s YO F T
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We have

s+4 3 1 1 1 25s+5 3 1 1 1
= — —_— s = — —"—7 .
(s+1D(s+3) 2s+1 2s+3 (s+1)(s+3) 2s+1 2s+3

Using the inverse Laplace transform, we obtain

3 1 3 1
z(t) = ie_t — 56_3t, y(t) = §e_t + 56_3t.
(&) .
i = -2z + Y,
4y
ot A _9
dt e

with the initial conditions z:(0) =1, y(0) = 2.
Taking Laplace transform, the system becomes

-1 =-2X(s)+Y(s),
sY(s)—2 = X(s)—2Y(s),

where X (s) = L (x(t)), Y(s) = L (y(t)).
Solving for X (s), Y(s). The above linear system of equations, we

get
s+ 4 25+ 5
X(s)= -T2 y(s)= -T2
(5) s24+4s+3’ (5) s2+4s5+3
Since
s+4 3 1 1 1 25+ 5 3 1 1 1

(s+1)(s+3) T 2s+1 25+3 (s+1)(s+3) - §s+1+§s+3’
Taking the inverse Laplace transform, we obtain

3 1

z(t) = §€7t - 56732 y(t) = 564 + 567315.
() .
g:: = —r+ 2y7
Y
o 9
7t T+Yy

with the initial conditions z(0) =1, y(0) = —1.
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Taking Laplace transform, the system becomes

sX(s)—1 =-X(s)+2Y(s),
1 =2X(s)+Y(s),

where X (s) = L (x(t)), Y(s) = L (y(t)).
Solving for X (s), Y (s). The above linear system of equations, we
get

s—3 a b 1—3s c d

X(8)232—5:5—\/5+5+\/§’ Y(s) = =

=5 s—v5 s+45

V-3 VE+3 1oV 1+4V5
25 2v5 25 25

Taking the inverse Laplace transform, we obtain

with a =

z(t) = aeV? +be™ V5 y(t) = ceV? + de= VP

The system has the operator form

{ (D + 1)z(t) + D*y(t) =0
x(t) + (D — 1)y(t) = sint.

Then y(t) = —cost —sint, z =y — y’ + sint = —sint.

The system has the operator form

{(D —1)(D = 2)z(t) + (D — Ly(t) =t
(D—2)x(t)+ (D+1

Then D(D—1)y(t) = —t+cost+sint and y = (§t*+t+a)—sin t+be’.
Hence 2/ (t)—2x(t) = —y'—y+sint = (—3t>—2t—1—a)—cost+2sint
and 1, 5 9 1

z(t) = Ae?* + (th + Zt + 3 + ia) —sint.

Since z(0) = 1,y(0) = 0,2'(0) = 1,4'(0) = 1, then
5

3 1 5 1
o(t) = g + (¥ + g —sint, y=(Gt*+t—1) —sint+e"
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Solutions of Exercises on Chapter 5

n 1™ /3
Zsm% % an x™, with as, = 0 et agp11 = ?(m—:l\Q/ et
"™ /3
a3nt2 = ?(m_:2\2f Then R =1.
(b)
—+oo +oo —+oo
n 71 n . 71 n
ZSIH(@)i _ @ ( ) IdnJrl + @Z ( ) x3n+2
= 3 2 n:O?m—i—l 2 3n + 2
_ */3/ tht f/ Y g
2 Jo 1+ 1—t+¢2
1 r dt
- 5w
0 V3
1 _1,2z -1 1 1, 1
= —tan + — tan —
= ltan_l(zr — 1) +—
2 V3 12°
1-2| (a) R= <
+oo too
(b) f(z)=> (n+Danpa" = (20— Nanz" = —Af(z) + 2f ().
n=0 n=0

The function f verifies the differential equation (2z — 1)f'(x) =
Af(z). Then f(z) = 2AIn(1 — 2z) for |z| < 3.

+oo n+1
(a) 57 = ZO 2", In(l + z) = 7;0(—1)":;1, then using the

series product we get

In(1 + z) - 1
e ZCn avee ¢, = (<1)" Y 1=
k=0

(b) The function f Verlﬁes the differential equation

(1- x2)y” —ay' = 2.
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If f(z Z anx™, then ag = a3 = 0 et ag = 2. Moreover (n+1)(n+

2n — 1)2aq9,—
2)ant2 = n2a, for n > 1. Then ag, = 0, 241 = (2n )"azm—

- 2n(2n+1) '
2"n!
et A2n4+1 = QW, and

(sin~! z)? Z+002 2" nio

s T x)T = P e—— .

— (2n+1)!
-1
sin”"yx  d 1 @2"(n+1)H%
- Y =92 ~  ~ 20 77
1‘(1 — ;(;) d.’E (Sln f Z 27’l + 1) .
1 1

r—eld g —eia’

If g(z) = In(1 — 2z cosa + 22), then ¢'(z) =

Since

1 o0
_ _ —ia n _—ina
T _ o = —€ E xTre .

Then

g(z) =1In(1 — 2z cos a + 2?) Z 2 7 cos (n+1)a.

—+oo .
: 241)" :
e cosz = Ree®®+) = Re E ux". If (2 +i) = v5el, then
n!

n=0
+oo n
€2 cosx = Z (\25') x"™ cosndb.
n=0
T —x a b
f(x)_l—x—a:Q_(m—a)(x—ﬂ)_a@—a x—3’
Witha:—l—'_\/g,b— 1_\/5 = 1+\/57and62—1_\/5.
24/5 2{ 2 2
T a X g a I 4
f(x)zl—x—a:Z - 75;05" B;@

1 *f (-2)"z Z
2V5 &= (1+f 2\f 1_
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+oo
Let y = Z anx™
n=0

+o0o

gjy/ = Z TLCLnZ‘n, Yy = Z(n + 1)(7’L + 2)an+2x". If Yy is a SOhltiOIl, then
= n=0

(n+1)(n+2)ant2 + (n+ 3)a, =0, VYn > 0.

Let u, = as, and v, = agp41.

2n+1 2n+1
Uy = —mun_l = (—1)"Wao
and ) on )
= = G
Then

Consider the differential equation

x(rx —4)y + (x +2)y = 2.

1) For 0 < z < 4,ify = Zanx” is a solution of the differential

+oo
equation,then z%y’ = Z(n — Dap—12", —day’ = —4Znanx”,

n=1

xy—Zan 12" and 2y—22an

Ify 1s a solutlon of the dlfferentlal equation, then ag = 1 and

n n!)?2
Uy = ————p_q1 = (2n)' .

2(2n — 1)

The radius of convergence of this series is 4.

2) The homogeneous differential equation is equivalent to:
! 2 1
Yy :,infi_fyhen
Yy z(x—4) 2z 2@x—4)

Y
ERVISE:
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Using the change of parameter method, y = u ‘/E) =, the function
4

(4—z
4—1)2
u satisfies: v’ = —27( Sx)
xr2

4—g)2 1 [4- 2_d=s 12
u:—2/ﬂdx:—2/f\/ Tz ' = 4/7dt:
T T T 1+¢2

At — 4tan" 1t

e

N S NV BV L Sy bW

 4-z (4_95)%t W )+(4_x)%
MWE VET Ve

S 1T e G

4—zx (4—1x)2 2 x
4 4
= \/E3tan_1( ° )
4—zx (4—x)2 4—zx

ol i
—/
_|_
S
-t
gw
Py
Sl
N~—
~_
|
ol s
—
_|_
S
=

+oo —+oo
1 (n!)?
2 2
Consider the differential equation

(1+2%)y" + 22y — 2y =0.

+oo

(a) Let y = Z a,z" be a solution of the differential equation. 2xy’ =
=0
+o00 " 00 +o00
Z 2nanz”, 22y = Z n(n—1)anz™, y = Z(n+1)(n+2)an+2x”.
n=0 n=0 0 n=0
-1 !
Then a,42 = _n = (n!) az =0, as = ayp.

n—i—lan 2n!’



196

1 n—1
We deduce that ag,+1 =0 for n > 1 and ag,, = % for n > 1.
n —
too (_l)n—1x2n
y = x and Z Ton 1 e solutions of the given differential
n —
=0
equation.
too n—1,.2n—1 too
(=)' = / —1,.2n-2 1
If z = - = 1" nTe = . Th
z ,; o 1 , 2 ;( T T2 en

z = tan"' () and the general solution of the differential equation is

y = az + b(1 + ztan"*(z)).

(b)

+o00
Let y = Zanx” be a solution of the differential equation. 2y’ =
n=0
fQ(n+1)a a", dzy’ = +§4n(n+1)a 2. Then a,, = L Ap—1 =
P n+1 ) Yy = o] n+1 . n — 2(n — 1)(27’L — 1) n—1 —
ao
Tm.

Then for y = cosh(y/|z]) is a solution of the differential equation. The
function sinh(y/x) is also a solution for z > 0.

+oo
Let y = Z a,x™ be a solution of the differential equation. The radius
n=0

of convergence is 1.
+oo oo 1
y = Z(n + )(n + 2)apt2z”, and xy = Zan_lx" and . =
n=0 n=1
Ap—1

+oo
z". We have: y (0) =1, then as = % and a0 = —2 4
,;) ro P P Dt

1
(n+1)(n+2)
an, 1
nt2)n+3)  (mt2)n+3)

Up43 = (

Let Up = A3n, Un = A3n+1, Wy = A3n+2-

Un, 1
U S 3 )t 1) 3B+ (n+ 1)
v = Un + L
T3+ 1)(Bn+4) | 3(n+1)(3Bn+4)
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W, 1
Ut T B+ 4)(Bn+5) | (3n+4)(3n+5)
+00 too
Lety = Z anx™ be a solution of the differential equation. y = Z(n +
n=0 n=0
+o00 00 xzn
D(n+ 2)ant2z™, vy’ = Z nap,x™ and cosz = Z(—l)”z—n' Then
n=0 n=0
a2n—1 ( n 2"n!
a =- =(-1)"——a
T Ton 1 (2n+ 11"
and
BT I G
2n 2n 2n!
+o00
Let y = Zana:" be a solution of the differential equation. 43:y” =
n=0
+o0 “+oo 400
Z dn(nt+1)ap412™, =2y = Z —(n+1)ans 12" and 922y = Z 9an102™.
n=0 n=0 n=0
Then a1 = as = 0 and
Yy, _2

ST T DEn - 1)

asp = on! 5 aA3n+4+1 = A3n+2 = 0.

For x > 0, y = cos(ac%) is a solution. Also y = sin(x%) is a solution.

+o00 +o0 +o0
Let y = Z anz™, vy = Z na,x", y = Z(n+ D(n+2)appo2™. Ifyis
n=0 n=0 n=0

a solution, then

(n+1)(n+2)any2 + (n+ 3)a, =0, VYn > 0.

Let uy, = as, and v, = agp41.-

2n+1 ( )n 2n+1
Uy = —————Up_1 = (— a
2n(2n—1) "' 2mpl 0
and
n+1 L2 (n +1)!

=t T Y @
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Then

+o00
n2n+1 o 2”n—|—1) "
DY

Consider the differential equation

x(x —4)y + (x+2)y = 2.

1) For 0 < z < 4, ify = Zanx" is a solution of the differential

+oo

equation,then z%y’ = Z(n — Dap_12", —dzy’ = —4Znanx”,
=1
+00 "
= Zan,lx" and 2y = ZZangc". If y is a solution of the
n=1 n=
differential equation, then ag = 1 and

n_ (n!)Qx
T22n—1)""t T 2n!

n

The radius of convergence of this series is 4.

2) The homogeneous differential equation is equivalent to:

Y T+2 1 3
y__ v _ - _ % Ty
Yy z(x—4) 2z 2(x—4) o

JT

Using the change of parameter method, y = u(4:f) T the function

u satisfies: u' = —2(4 — x)l

u:—2/(4_xé ——2/ d:,C 214 idt:
1 + 12

At —4tan~ 't

B 4/ -z - 4—z MWz
YT d-a) (V P )>+(4—m)%
4 4/
d—x  (4—=x) x +(4_x)%

e
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Since y(0) = 1, then A = 2.

4 4
- VI ()
4—x (4—1z)2 4—zx

+oo 1 +oo (n!)2 4 1 1 _4
ZWZZ o] :y(1)=3<1+\/§tan (3))_3<1+\/§6

n=0 \n n=0

Consider the differential equation

1+ xZ)y” + 22y’ — 2y =0.

+o0

Let y = Zan:v" be a solution of the differential equation. 2xy’ =
=0
+o0 " +o0 +oo
Z Inanx™, 12y = n(n —Dayz™, y = Z(n +1)(n + 2)an422™.
n=0 n=0 ) n=0
n—1 n!
Then Ap42 = —man = %, az = O7 ag = agp.
(_1)77,—1
We deduce that ag,+1 =0 for n > 1 and ag,, = on—1 for n > 1.
n

y = x and Z Ton_1 are solutions of the given differential equation.

400 (_l)n—len—l +oo L 9no 1
_ ! __ n— n— — —
If 2 = E W’ z = E (—1) X = 1+x2 Then z =
n=1 n=1

tan~'(x) and the general solution of the differential equation is
y = ax + b(1 + ztan" ' (z)).
Consider the differential equation
dzy +2y —y=0.
+oo

Find a power series Z anx™ solution of the differential equation.

n=0
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+oo
Let y = Zanx" be a solution of the differential equation. 2y’ =
n=0
400 ., 400 1
W;JZ(n—&-l)aon", doy = 7;)4n(n+1)an+1x". Then a,, = D@m= 1)an_1 =
- =
2n!’

Then for y = cosh(y/|x|) is a solution of the differential equation. The
function sinh(y/7) is also a solution for z > 0.

—+oo
Let y = Z anx™ be a solution of the differential equation. The radius

n=0
of convergence is 1.
+oo too 1
Y= n+ 1)(n + 2)a,i22™, and zy = ap—1x"™ and =
Y nz::o( )( ) n+2 Yy nz::l n—1 1—x

+oo
" Gn—1
x". We have: y (0) = 1, then as = % and @40 = ——— +
HZ:O 2 (n+1)(n+2)
1
(n+1)(n+2)
ay 1

nt2)n+3)  (mnt2)n+3)

Let Up = A3n, Up = @3p+1, Wy = A3n42-

Ap43 = (

. Uy, 1
U S 3 )t 1) 3B (nt 1)
Un, n 1
Un = )
T3+ 1)Bn+4) | 3(n+1)3n+4)
w _ W, n 1
T Bn+4)(Bn+5) | Bn+4)(Bn+5)
+oo , +oo
Let y = Z anx" be a solution of the differential equation. y = Z(n +
n=0 n=0
too too 2n
1(n+ 2)apio2™, 2y’ = gnanx‘" and cosz = T;)(—l)" ol Then
A2p— o 2"n!
pni1 = — oot = (1) 101

41 (2n+1)

and ,
_ G-y (=D
2n on!

A2n =
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+oo
Let y = Zanaﬁ" be a solution of the differential equation. 4xy” =
=0
400 " +o0 +o0
Z dn(nt+1)ansi12™, =2y = Z —(n+1)ans 12" and 922y = Z 9a,ox™.
n=0 n=0 n=0

Then a; = as = 0 and

_ 9an—2
T T+ D)En—1)
=

gn = "51=r  G3n41 = G3nt2 = 0.

3
2

For z > 0, y = cos(z?) is a solution. Also y = sin(x?) is a solution.

Consider the following differential equation

y +ay —axy=0. (5.13)
“+o0
1) Let y = Z anz™ be a solution of the differential equation (5.13).
=0
+og —+oo +oo
zy = Z na,r",y = Z(n+2)(n+1)an+2x" and zy = Z 12"
n=0 n=1

n=0
Then as = 0 and

(n+3)(n+2)ants + (n+ 1)ap41 — an =0, Vn € N.

2) (n+ Dbpp1 =+ 1) (n+2)ani2+ (n+ 1apyr + (n+ 1)a, = by,.
ap + ay
n!

3) We deduce that b, = for all n € N.

+oo
4) R’ = +oo and Z bpx™ = (ap + a1)e”.
n=0
+oo +oo
D bua™ =3 (0 + Dangs +an +ap-1)a” = '(2) + (2 +1)S(@),
n=0

n=0

Vz €] — R, R].

5) Then the function S is solution of the differential equation

y'(z) + (x + Dy(z) = (ag + a1)e”, Vr €] — R, R].

T 2 22
The solutions of this linear differential equation is y = (a+b / e T2 dt)e’s T2,
0
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Let y, be a function of class C? on R.

(a) Prove that the function y is solution of the equation (5.13) on R if
and only if it is solution of the differential equation

y'(z) + (x + Dy(z) = (¥'(0) + y(0))e”, Vr €] — R,R[. (5.14)

T 2 22
(b) Prove that the function f = (a+ b/ ez T2 dt)e’s 2% is a solution
0
of the equation (5.14).

(c) Deduce the set of solutions of the equation (5.13) on R.

“+oo 0 o
Let y = Zanx”, y/ = Znanxn_l, —2xy/ = —ZQnanx”, y// =
n=0 n=1 n=1

Z(n + 1)(n+ 1)aps2z™. Then
n=0
Z(n +2)(n+ 1)aps2z™ + Z —2nanx” + Z anz” =0
n=0 n=0 n=0
and 5 1
" —
= - - Vn > 0.
Ap+4-2 (n n 2>(n T 1)ana n =z
We deduce that
4 — —1~3~7---(4n—5)a
2n — (2%)' 0
and
1:5-9---(4n —3)
a2n+1 = ay

(2n+1)!

The independent solution of the differential equation are:

oo
2n
Yy = E A2nT
n=0
and

e}
_ 2n+1
Y2 = § 21417
n=0
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