Functional Dependencies- Examples

Dr. Bassam Hammo

Exercise #1: FD's From DB Instances

- Below is an instance of R(A1,A2,A3,A4). Choose the FD which may hold on R
- 1. A4 →A1
- 2. A2A3 → A4
- 3. A2A3 → A1

A1	A2	A3	A4
1	2	3	4
1	2	3	5
6	7	8	2
2	1	3	4

Solution #1: FD's From DB Instances

1. A4 → A1 ???

- **Incorrect:** The 1st and 4th tuple violates it
- 2. A2A3 → A4 ???
- **Incorrect:** The1st and 2nd tuple violates it.
- 3. A2A3 → A1 ???
- Correct!

A1	A2	A3	A4
1	2	3	4
1	2	3	5
6	7	8	2
2	1	3	4

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

- Testing for superkey:
 - To test if α is a superkey, we compute α^{+} , and check if α^{+} contains all attributes of *R*.
- Testing functional dependencies
 - To check if a functional dependency $\alpha \rightarrow \beta$ holds (or, in other words, is in F^+), just check if $\beta \subseteq \alpha^+$.
 - That is, we compute α^+ by using attribute closure, and then check if it contains β .
 - Is a simple and cheap test, and very useful

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

- Computing closure of F
 - For each $\gamma \subseteq R$, we find the closure γ^+ , and for each $S \subseteq \gamma^+$, we output a functional dependency $\gamma \to S$.

Exercise #2: Checking if an FD Holds on F Using the Closure

- Let R(ABCDEFGH) satisfy the following functional dependencies: {A->B, CH->A, B->E, BD->C, EG->H, DE->F}
- Which of the following FD is also guaranteed to be satisfied by R?
- 1. BFG → AE
- 2. ACG \rightarrow DH 3. CEG \rightarrow AB

Hint: Compute the closure of the LHS of each FD that you get as a choice. If the RHS of the candidate FD is contained in the closure, then the candidate follows from the given FDs, otherwise not.

Solution #2: Checking if an FD Holds on F Using the Closure

- FDs: $\{A \rightarrow B, CH \rightarrow A, B \rightarrow E, BD \rightarrow C, EG \rightarrow H, DE \rightarrow F\}$
- 1. BFG → AE ???
 - **Incorrect:** BFG+ = BFGEH, which includes E, but not A
- 2. ACG → DH ???
 - **Incorrect:** ACG+ = ACGBE, which includes neither D nor H.
- 3. CEG → AB ???
 - **Correct:** CEG+ = CEGHAB, which contains AB

Exercise #3: Checking for Keys Using the Closure

- Which of the following could be a key for R(A,B,C,D,E,F,G) with functional dependencies {AB→C, CD→E, EF→G, FG→E, DE→C, and BC→A}
- 1. BDF
- 2. ACDF
- 3. ABDFG
- 4. BDFG

Solution #3: Checking for Keys Using the Closure

- {AB->C, CD->E, EF->G, FG->E, DE->C, and BC->A}
- 1. BDF ???
- No. $BDF^+ = BDF$
- 2. ACDF ???
- No. ACDF⁺ = ACDFEG (The closure does not include B)
- 3. ABDFG ???
- No. This choice is a superkey, but it has proper subsets that are also keys (e.g. BDFG⁺ = BDFGECA)

Solution #3: Checking for Keys Using the Closure

- {AB->C, CD->E, EF->G, FG->E, DE->C, and BC->A}
- 4. BDFG ???
- $BDFG^+ = ABCDEFG$
- Check if any subset of BDFG is a key:
 - Since B, D, F never appear on the RHS of the FDs, they must form part of the key.
 - $BDF^+ = BDF \leftarrow Not key$
 - So, BDFG is the minimal key, hence the candidate key

Finding Keys using FDs

- Tricks for finding the key:
- If an attribute never appears on the *RHS* of any FD, it *must be part of the key*
- If an attribute never appears on the *LHS* of any FD, but appears on the *RHS* of any FD, it *must not be part of any key*

Exercise #4: Checking for Keys Using the Closure

Consider R = {A, B, C, D, E, F, G, H} with a set of FDs F = {CD \rightarrow A, EC \rightarrow H, GHB \rightarrow AB, C \rightarrow D, EG \rightarrow A, H \rightarrow B, BE \rightarrow CD, EC \rightarrow B} Find all the candidate keys of R

Solution #4: Checking for Keys Using the Closure

- $F = \{CD \rightarrow A, EC \rightarrow H, GHB \rightarrow AB, C \rightarrow D, EG \rightarrow A, H \rightarrow B, BE \rightarrow CD, EC \rightarrow B\}$
- First, we notice that:
 - **EFG** never appear on RHS of any FD. So, **EFG** must be part of ANY key of R
 - A never appears on LHS of any FD, but appears on RHS of some FD. So, **A** is not part of ANY key of R
 - We now see if EFG is itself a key...
 - $EFG+ = EFGA \neq R$; So, **EFG** alone is not key

Solution #4: Checking for Keys Using the Closure

- Checking by adding single attribute with **EFG** (except **A**):
- BEFG+ = ABCDEFGH = R; it's a key [BE→CD, EG→A, EC→H]
- CEFG+ = ABCDEFGH = R; it's a key [EG \rightarrow A, EC \rightarrow H, H \rightarrow B, BE \rightarrow CD]
- DEFG+ = ADEFG \neq R; it's not a key [EG \rightarrow A]
- EFGH = ABCDEFGH = R; it's a key $[EG \rightarrow A, H \rightarrow B, BE \rightarrow CD]$
- If we add any further attribute(s), they will form the superkey. Therefore, we can stop here searching for candidate key(s).
- Therefore, candidate keys are: {BEFG, CEFG, EFGH}

Exercise #5: Checking for Keys Using the Closure

Consider R = {A, B, C, D, E, F, G} with a set of FDs $F = {ABC \rightarrow DE, AB \rightarrow D, DE \rightarrow ABCF, E \rightarrow C}$ <u>Find all the candidate keys of R</u>

Solution #5: Checking for Keys Using the Closure

$F = \{ABC \rightarrow DE, AB \rightarrow D, DE \rightarrow ABCF, E \rightarrow C\}$

- First, we notice that:
 - **G** never appears on RHS of any FD. So, **G** must be part of ANY key of R.
 - **F** never appears on LHS of any FD, but appears on RHS of some FD. So, **F** is not part of ANY key of R
 - $G + = G \neq R$ So, G alone is not a key!

Solution #5: Checking for Keys Using the Closure

- Now we try to find keys by adding more attributes (except F) to G
 - Add LHS of FDs that have only one attribute (E in $E \rightarrow C$):
 - $GE+=GEC \neq R$
 - Add LHS of FDs that have two attributes (AB in AB \rightarrow D and DE in DE \rightarrow ABCF):
 - GAB+ = GABD
 - $GDE + = ABCDEFG = R; [DE \rightarrow ABCF]$ It's a key!
 - Add LHS of FDs that have three attributes (ABC in ABC→DE), but not taking super set of GDE:
 - GABC+ = ABCDEFG = R; $[ABC \rightarrow DE, DE \rightarrow ABCF]$ It's a key!
 - $GABE + = ABCDEFG = R; [AB \rightarrow D, DE \rightarrow ABCF]$ It's a key!
 - If we add any further attribute(s), they will form the superkey. Therefore, we can stop here.
 - The candidate key(s) are {GDE, GABC, GABE}

Canonical Cover

- Sets of functional dependencies may have redundant dependencies that can be inferred from the others
 - Eg: A \rightarrow C is redundant in: {A \rightarrow B, B \rightarrow C, A \rightarrow C}
 - Parts of a functional dependency may be redundant
 - E.g. on RHS: {A \rightarrow B, B \rightarrow C, A \rightarrow CD} can be simplified to {A \rightarrow B, B \rightarrow C, A \rightarrow D}
 - E.g. on LHS: {A \rightarrow B, B \rightarrow C, AC \rightarrow D} can be simplified to {A \rightarrow B, B \rightarrow C, A \rightarrow D}
- Intuitively, a canonical cover of F is a "minimal" set of functional dependencies equivalent to F, having no redundant dependencies or redundant parts of dependencies