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Exercise #1: FD’s From DB Instances

� Below is an instance of R(A1,A2,A3,A4). Choose the FD 
which may hold on R

1. A4 �A1

2. A2A3 �A4

3. A2A3 �A13. A2A3 �A1



1. A4 �A1 ???

� Incorrect: The 1st and 4th tuple violates it

2. A2A3 �A4 ???

� Incorrect:The1st and 2nd tuple violates it.

3. A2A3 �A1 ???

Solution #1: FD’s From DB Instances

3. A2A3 �A1 ???

� Correct!



Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

� Testing for superkey:

� To test if α is a superkey, we compute α+, and check if 
α+ contains all attributes of R.

Testing functional dependencies� Testing functional dependencies

� To check if a functional dependency α → β holds (or, 
in other words, is in F+), just check if β ⊆ α+. 

� That is, we compute α+ by using attribute closure, and 
then check if it contains β. 

� Is a simple and cheap test, and very useful



Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

� Computing closure of F

� For each γ ⊆ R, we find the closure γ+, and for each S
⊆ γ+, we output a functional dependency γ → S.



Exercise #2: Checking if an FD Holds on F

Using the Closure

� Let R(ABCDEFGH) satisfy the following functional 
dependencies: {A->B, CH->A, B->E, BD->C, EG->H, 
DE->F}

� Which of the following FD is also guaranteed to be 
satisfied by R?
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satisfied by R?

1. BFG �AE

2. ACG � DH

3. CEG �AB

Hint: Compute the closure of the LHS 

of each FD that you get as a choice. 

If the RHS of the candidate FD is 

contained in the closure, then the 

candidate follows from the given FDs, 

otherwise not.



Solution #2: Checking if an FD Holds on F

Using the Closure

� FDs: {A->B, CH->A, B->E, BD->C, EG->H, DE->F}

1. BFG �AE ???
� Incorrect: BFG+ = BFGEH, which includes E, but not A

2. ACG � DH ???
� Incorrect:ACG+ = ACGBE, which includes neither D nor H.
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� Incorrect:ACG+ = ACGBE, which includes neither D nor H.

3. CEG �AB ???
� Correct: CEG+ = CEGHAB, which contains AB



Exercise #3: Checking for Keys Using the Closure

� Which of the following could be a key for R(A,B,C,D,E,F,G) 
with functional dependencies {AB�C, CD�E, EF�G, 
FG�E, DE�C, and BC�A}

1. BDF

2. ACDF2. ACDF

3. ABDFG

4. BDFG



Solution #3: Checking for Keys Using the Closure

� {AB->C, CD->E, EF->G, FG->E, DE->C, and BC->A}
1. BDF ???
� No. BDF+ = BDF
2. ACDF ???
� No. ACDF+ = ACDFEG (The closure does not include B)
3. ABDFG ???3. ABDFG ???
� No. This choice is a superkey, but it has proper subsets that 
are also keys (e.g. BDFG+ = BDFGECA)



Solution #3: Checking for Keys Using the Closure

� {AB->C, CD->E, EF->G, FG->E, DE->C, and BC->A}

4. BDFG ???

� BDFG+ = ABCDEFG

� Check if any subset of BDFG is a key:
� Since B, D, F never appear on the RHS of the FDs, they must form � Since B, D, F never appear on the RHS of the FDs, they must form 
part of the key.

� BDF+ = BDF � Not key

� So, BDFG is the minimal key, hence the candidate key



Finding Keys using FDs
� Tricks for finding the key:

� If an attribute never appears on the RHS of any FD, it must be 
part of the key

� If an attribute never appears on the LHS of any FD, but 
appears on the RHS of any FD, it must not be part of any keyappears on the RHS of any FD, it must not be part of any key



Exercise #4: Checking for Keys Using the Closure

Consider R = {A, B, C, D, E, F, G, H} with a set of FDs 

F = {CD→A, EC→H, GHB→AB, C→D, EG→A, 

H→B, BE→CD, EC→B} 

Find all the candidate keys of R 



Solution #4: Checking for Keys Using the Closure

F = {CD→A, EC→H, GHB→AB, C→D, EG→A, H→B, 
BE→CD, EC→B} 

� First, we notice that:
� EFG never appear on RHS of any FD. So, EFG must be part of 
ANY key of R 

� A never appears on LHS of any FD, but appears on RHS of � A never appears on LHS of any FD, but appears on RHS of 
some FD. So, A is not part of ANY key of R 

� We now see if EFG is itself a key…
� EFG+ = EFGA ≠ R; So, EFG alone is not key 



Solution #4: Checking for Keys Using the Closure

� Checking by adding single attribute with EFG (except A): 

� BEFG+ = ABCDEFGH = R; it’s a key [BE→CD, EG→A, 
EC→H] 

� CEFG+ = ABCDEFGH = R; it’s a key [EG→A, EC→H, H→B, 
BE→CD] 

� DEFG+ = ADEFG ≠ R; it’s not a key [EG→A] � DEFG+ = ADEFG ≠ R; it’s not a key [EG→A] 

� EFGH+ = ABCDEFGH = R; it’s a key [EG→A, H→B, BE→CD] 
� If we add any further attribute(s), they will form the superkey. 
Therefore, we can stop here searching for candidate key(s). 

� Therefore, candidate keys are: {BEFG, CEFG, EFGH} 



Exercise #5: Checking for Keys Using the Closure

Consider R = {A, B, C, D, E, F, G} with a set of FDs 

F = {ABC→DE, AB→D, DE→ABCF, E→C} 

Find all the candidate keys of R 



Solution #5: Checking for Keys Using the Closure

F = {ABC→DE, AB→D, DE→ABCF, E→C} 

� First, we notice that:
� G never appears on RHS of any FD. So, G must be part of ANY 
key of R.

� F never appears on LHS of any FD, but appears on RHS of some � F never appears on LHS of any FD, but appears on RHS of some 
FD. So, F is not part of ANY key of R

� G+ = G ≠ R      So, G alone is not a key! 



Solution #5: Checking for Keys Using the Closure

� Now we try to find keys by adding more attributes (except F)  to G
� Add LHS of FDs that have only one attribute (E in E→C):
� GE+ = GEC ≠ R 
� Add LHS of FDs that have two attributes (AB in AB→D and DE in DE→ABCF): 
� GAB+ = GABD
� GDE+ = ABCDEFG = R;   [DE→ABCF]    It’s a key!� GDE+ = ABCDEFG = R;   [DE→ABCF]    It’s a key!
� Add LHS of FDs that have three attributes (ABC in ABC→DE), but not taking 
super set of GDE: 

� GABC+ = ABCDEFG = R;   [ABC→DE, DE→ABCF]    It’s a key!
� GABE+ = ABCDEFG = R;   [AB→D, DE→ABCF]         It’s a key!
� If we add any further attribute(s), they will form the superkey. Therefore, we can 
stop here. 

� The candidate key(s) are {GDE, GABC, GABE} 



Canonical Cover

� Sets of functional dependencies may have redundant 
dependencies that can be inferred from the others

� Eg:  A → C is redundant in:   {A → B,   B → C,   A → C}

� Parts of a functional dependency may be redundant
� E.g. on RHS:    {A → B,   B → C,   A → CD}  can be simplified to � E.g. on RHS:    {A → B,   B → C,   A → CD}  can be simplified to 

{A → B,   B → C,   A → D} 

� E.g. on LHS:    {A → B,   B → C,   AC → D}  can be simplified to 
{A → B,   B → C,   A → D} 

� Intuitively, a canonical cover of F is a “minimal” set of 
functional dependencies equivalent to F, having no redundant 
dependencies or redundant parts of dependencies 


