Functional Dependencies- Examples

Dr. Bassam Hammo

Exercise \#1: FD's From DB Instances

- Below is an instance of R(A1, A2, A3, A4). Choose the FD which may hold on R

1. $\mathrm{A} 4 \rightarrow \mathrm{~A} 1$
2. $\mathrm{A} 2 \mathrm{~A} 3 \rightarrow \mathrm{~A} 4$
3. $\mathrm{A} 2 \mathrm{~A} 3 \rightarrow \mathrm{~A} 1$

Solution \#1: FD's From DB Instances

1. A4 $\rightarrow \mathrm{A} 1$???

- Incorrect: The 1st and 4th tuple violates it

2. A2A3 \rightarrow A4 ? ??

- Incorrect:The1st and 2nd tuple violates it.

3. A2A3 $\rightarrow \mathrm{A} 1$???

- Correct!

$\mathbf{A 1}$	$\mathbf{A 2}$	$\mathbf{A 3}$	$\mathbf{A 4}$
1	2	3	4
1	2	3	5
6	7	8	2
2	1	3	4

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

- Testing for superkey:
- To test if α is a superkey, we compute α^{+}, and check if α^{+}contains all attributes of R.
- Testing functional dependencies
- To check if a functional dependency $\alpha \rightarrow \beta$ holds (or, in other words, is in F^{+}, , just check if $\beta \subseteq \alpha^{+}$.
- That is, we compute α^{+}by using attribute closure, and then check if it contains β.
- Is a simple and cheap test, and very useful

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

- Computing closure of F
- For each $\gamma \subseteq R$, we find the closure γ^{+}, and for each S $\subseteq \gamma^{+}$, we output a functional dependency $\gamma \rightarrow S$.

Exercise \#2: Checking if an FD Holds on F Using the Closure

- Let R(ABCDEFGH) satisfy the following functional dependencies: $\{\mathrm{A}->\mathrm{B}, \mathrm{CH}->\mathrm{A}, \mathrm{B}->\mathrm{E}, \mathrm{BD}->\mathrm{C}, \mathrm{EG}->\mathrm{H}$, DE- $>\mathrm{F}\}$
- Which of the following FD is also guaranteed to be satisfied by R?

1. $\mathrm{BFG} \rightarrow \mathrm{AE}$
2. $\mathrm{ACG} \rightarrow \mathrm{DH}$

Hint: Compute the closure of the LHS of each FD that you get as a choice. If the RHS of the candidate FD is contained in the closure, then the candidate follows from the given FDs, otherwise not.

Solution \#2: Checking if an FD Holds on F Using the Closure

- FDs: $\{\mathrm{A}->\mathrm{B}, \mathrm{CH}->\mathrm{A}, \mathrm{B}->\mathrm{E}, \mathrm{BD}->\mathrm{C}, \mathrm{EG}->\mathrm{H}, \mathrm{DE}->\mathrm{F}\}$

1. $\mathrm{BFG} \rightarrow \mathrm{AE}$???

- Incorrect: $\mathrm{BFG}+=\mathrm{BFGEH}$, which includes E , but not A

2. $\mathrm{ACG} \rightarrow \mathrm{DH}$???

- Incorrect: $\mathrm{ACG}+=\mathrm{ACGBE}$, which includes neither D nor H .

3. $\mathrm{CEG} \rightarrow \mathrm{AB}$???

- Correct: CEG $+=$ CEGHAB, which contains AB

Exercise \#3: Checking for Keys Using the Closure

- Which of the following could be a key for R(A,B,C,D,E,F,G) with functional dependencies $\{\mathrm{AB} \longrightarrow \mathrm{C}, \mathrm{CD} \longrightarrow \mathrm{E}, \mathrm{EF} \longrightarrow \mathrm{G}$, $\mathrm{FG} \rightarrow \mathrm{E}, \mathrm{DE} \rightarrow \mathrm{C}$, and $\mathrm{BC} \rightarrow \mathrm{A}\}$

1. BDF
2. ACDF
3. ABDFG
4. BDFG

Solution \#3: Checking for Keys Using the Closure

- $\{\mathrm{AB}->\mathrm{C}, \mathrm{CD}->\mathrm{E}, \mathrm{EF}->\mathrm{G}, \mathrm{FG}->\mathrm{E}, \mathrm{DE}->\mathrm{C}$, and $\mathrm{BC}->\mathrm{A}\}$

1. BDF ???

- No. $\mathrm{BDF}^{+}=\mathrm{BDF}$

2. ACDF ???

- No. $\mathrm{ACDF}^{+}=\mathrm{ACDFEG}$ (The closure does not include B) 3. ABDFG ???
- No. This choice is a superkey, but it has proper subsets that are also keys (e.g. $\mathrm{BDFG}^{+}=\mathrm{BDFGECA}^{4}$)

Solution \#3: Checking for Keys Using the Closure

- $\{\mathrm{AB}->\mathrm{C}, \mathrm{CD}->\mathrm{E}, \mathrm{EF}->\mathrm{G}, \mathrm{FG}->\mathrm{E}, \mathrm{DE}->\mathrm{C}$, and $\mathrm{BC}->\mathrm{A}\}$

4. BDFG ???

- $\mathrm{BDFG}^{+}=\mathrm{ABCDEFG}$
- Check if any subset of BDFG is a key:
- Since B, D, F never appear on the RHS of the FDs, they must form part of the key.
- $\mathrm{BDF}^{+}=\mathrm{BDF} \leftarrow$ Not key
- So, BDFG is the minimal key, hence the candidate key

Finding Keys using FDs

- Tricks for finding the key:
- If an attribute never appears on the RHS of any FD, it must be part of the key
- If an attribute never appears on the LHS of any FD, but appears on the RHS of any FD, it must not be part of any key

Exercise \#4: Checking for Keys Using the Closure

Consider $\mathrm{R}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}\}$ with a set of FDs
$\mathrm{F}=\{\mathrm{CD} \rightarrow \mathrm{A}, \mathrm{EC} \rightarrow \mathrm{H}, \mathrm{GHB} \rightarrow \mathrm{AB}, \mathrm{C} \rightarrow \mathrm{D}, \mathrm{EG} \rightarrow \mathrm{A}$, $\mathrm{H} \rightarrow \mathrm{B}, \mathrm{BE} \rightarrow \mathrm{CD}, \mathrm{EC} \rightarrow \mathrm{B}\}$

Find all the candidate keys of R

Solution \#4: Checking for Keys Using the Closure

$$
\begin{aligned}
& \mathrm{F}=\{\mathrm{CD} \rightarrow \mathrm{~A}, \mathrm{EC} \rightarrow \mathrm{H}, \mathrm{GHB} \rightarrow \mathrm{AB}, \mathrm{C} \rightarrow \mathrm{D}, \mathrm{EG} \rightarrow \mathrm{~A}, \mathrm{H} \rightarrow \mathrm{~B}, \\
&\mathrm{BE} \rightarrow \mathrm{CD}, \mathrm{EC} \rightarrow \mathrm{~B}\}
\end{aligned}
$$

- First, we notice that:
- EFG never appear on RHS of any FD. So, EFG must be part of ANY key of R
- A never appears on LHS of any FD, but appears on RHS of some FD. So, A is not part of ANY key of R
- We now see if EFG is itself a key...
- $\mathrm{EFG}+=\mathrm{EFGA} \neq \mathrm{R}$; So, $\mathbf{E F G}$ alone is not key

Solution \#4: Checking for Keys Using the Closure

- Checking by adding single attribute with EFG (except A):
- $\mathrm{BEFG}+=\mathrm{ABCDEFGH}=\mathrm{R}$; it's a key $[\mathrm{BE} \rightarrow \mathrm{CD}, \mathrm{EG} \rightarrow \mathrm{A}$, $\mathrm{EC} \rightarrow \mathrm{H}]$
- CEFG $+=$ ABCDEFGH $=R$; it's a key $[E G \rightarrow A, E C \rightarrow H, H \rightarrow B$, $\mathrm{BE} \rightarrow \mathrm{CD}]$
- $\operatorname{DEFG}+=$ ADEFG $\neq \mathrm{R}$; it's not a key $[E G \rightarrow A]$
- $\mathrm{EFGH}+=\mathrm{ABCDEFGH}=\mathrm{R}$; it's a key $[\mathrm{EG} \rightarrow \mathrm{A}, \mathrm{H} \rightarrow \mathrm{B}, \mathrm{BE} \rightarrow \mathrm{CD}]$
- If we add any further attribute(s), they will form the superkey. Therefore, we can stop here searching for candidate key(s).
- Therefore, candidate keys are: $\{$ BEFG, CEFG, EFGH\}

Exercise \#5: Checking for Keys Using the Closure

Consider $\mathrm{R}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}\}$ with a set of FDs
$\mathrm{F}=\{\mathrm{ABC} \rightarrow \mathrm{DE}, \mathrm{AB} \rightarrow \mathrm{D}, \mathrm{DE} \rightarrow \mathrm{ABCF}, \mathrm{E} \rightarrow \mathrm{C}\}$
Find all the candidate keys of R

Solution \#5: Checking for Keys Using the Closure

$\mathrm{F}=\{\mathrm{ABC} \rightarrow \mathrm{DE}, \mathrm{AB} \rightarrow \mathrm{D}, \mathrm{DE} \rightarrow \mathrm{ABCF}, \mathrm{E} \rightarrow \mathrm{C}\}$

- First, we notice that:
- G never appears on RHS of any FD. So, G must be part of ANY key of R.
- F never appears on LHS of any FD, but appears on RHS of some FD. So, \mathbf{F} is not part of ANY key of R
- $\mathrm{G}+=\mathrm{G} \neq \mathrm{R} \quad$ So, G alone is not a key!

Solution \#5: Checking for Keys Using the Closure

- Now we try to find keys by adding more attributes (except F) to G
- Add LHS of FDs that have only one attribute (E in $\mathrm{E} \rightarrow \mathrm{C}$):
- GE+ $=\mathrm{GEC} \neq \mathrm{R}$
- Add LHS of FDs that have two attributes (AB in $\mathrm{AB} \rightarrow \mathrm{D}$ and DE in $\mathrm{DE} \rightarrow \mathrm{ABCF}$):
- GAB+ $=$ GABD
- GDE $+=\mathrm{ABCDEFG}=\mathrm{R}$; $[\mathrm{DE} \rightarrow \mathrm{ABCF}]$ It's a key!
- Add LHS of FDs that have three attributes (ABC in ABC \rightarrow DE), but not taking super set of GDE:
- $\mathrm{GABC}+=\mathrm{ABCDEFG}=\mathrm{R} ; \quad[\mathrm{ABC} \rightarrow \mathrm{DE}, \mathrm{DE} \rightarrow \mathrm{ABCF}] \quad$ It's a key!
- $\mathrm{GABE}+=\mathrm{ABCDEFG}=\mathrm{R} ;[\mathrm{AB} \rightarrow \mathrm{D}, \mathrm{DE} \rightarrow \mathrm{ABCF}] \quad$ It's a key!
- If we add any further attribute(s), they will form the superkey. Therefore, we can stop here.
- The candidate key(s) are $\{$ GDE, GABC, GABE $\}$

Canonical Cover

- Sets of functional dependencies may have redundant dependencies that can be inferred from the others
- Eg: $\mathrm{A} \rightarrow \mathrm{C}$ is redundant in: $\{\mathrm{A} \rightarrow \mathrm{B}, \mathrm{B} \rightarrow \mathrm{C}, \mathrm{A} \rightarrow \mathrm{C}\}$
- Parts of a functional dependency may be redundant
- E.g. on RHS: $\quad\{\mathrm{A} \rightarrow \mathrm{B}, \mathrm{B} \rightarrow \mathrm{C}, \mathrm{A} \rightarrow \mathrm{CD}\}$ can be simplified to $\{\mathrm{A} \rightarrow \mathrm{B}, \mathrm{B} \rightarrow \mathrm{C}, \mathrm{A} \rightarrow \mathrm{D}\}$
- E.g. on LHS: $\quad\{\mathrm{A} \rightarrow \mathrm{B}, \mathrm{B} \rightarrow \mathrm{C}, \mathrm{AC} \rightarrow \mathrm{D}\} \quad$ can be simplified to

$$
\{\mathrm{A} \rightarrow \mathrm{~B}, \mathrm{~B} \rightarrow \mathrm{C}, \mathrm{~A} \rightarrow \mathrm{D}\}
$$

- Intuitively, a canonical cover of F is a "minimal" set of functional dependencies equivalent to F, having no redundant dependencies or redundant parts of dependencies

