CHEM 231 - CEMICAL THERMODYNAMICS 3 credit hours (2 + 0 + 1)

First: Theoretical lectures syllabus

Торіс		Hours
1. Importance of thermodynamics and te	rminology:	
 The system, boundaries, surroundings State of the system States' functions (variables) Intensive and extensive properties Path of changing the system state and path func Types of processes (isothermal, adiabatic, processes) 	tions isochoric, and isobaric	<u>3</u>
2. Work and heat		
 P-V work Specific heat Hat capacities of an ideal gas at constant work pressure Thermal energy, kinetic energy, and temper relationships between them 	volume and at constant erature: definitions and	<u>3</u>
First midterm exam		1
3. The Zeroth law		
 Thermal equilibrium The zeroth law statement Celsius scale for temperature 		<u>2</u>
4. The first law		
 Internal energy "U" (the heat content at constant Change in internal energy (ΔU) The law of conservation of energy and he matche first law Joule's experiment Calculations of ΔU for an ideal gas expansion a ✓ Isothermal reversible and irreversible pro ✓ Adiabatic reversible and irreversible pro The Enthalpy (H): the heat content at constant T Change in enthalpy (ΔH) Joule and Thomson's experiment Calculations of ΔH for an ideal gas expansion a ✓ Isothermal reversible and irreversible pro Relation between ΔU and ΔH 	t T and V) thematical expression of nd compression: ocesses cesses Γ and P nd compression: ocesses ocesses	4
Second midterm exam		1

Торіс	Hours
5. Thermochemistry	
 The standard state of matter Enthalpies of some transitions (physical changes): fusion, vaporization, sublimation, atomization. Enthalpies of some reactions (chemical changes) combustion, neutralization, and formation Factors affecting the value of ΔH ✓ Effect of the type of change ✓ Effect of the amount of substances involved ✓ Effect of pressure ✓ Effect of temperature Ways of determination of ΔH ✓ Calculation of ΔH using Hess's law of heat summation ✓ Calculation of ΔH using bonding energies ✓ Calculation of ΔH using Kirchhoff law 	<u>4</u>
6. The second law	
 Carnot cycle and the thermal engine efficiency The concept of spontaneity The concept of entropy (S) Spontaneity and entropy Selected statements of the second law Calculations of ΔS of an ideal gas as result of: ✓ Reversible change in its volume or pressure at constant temperature ✓ Reversible change in its temperature at constant volume and at constant pressure Calculations of changes in entropy of an ideal gas as a result of irreversible changes in its volume, pressure, and temperature including its change to another physical state Exercises + fourth auiz 	<u>4</u>
7. The third law	
 Statement of the third law The absolute entropy The absolute entropy at the absolute zero temperature and the residual entropy Use of heating curves to calculate absolute entropy of a substance at any temperature at constant pressure Calculation of ΔS at any temperature using ΔS at another temperature Calculation of ΔS° of any reaction at using the values of standard absolute entropy (S°) of reactants and products 	2

Торіс	Hours
8. The free energy and equilibrium	
• The concept of the free energy	
• The free energy and the change in the free energy of an ideal gas at	
constant temperature and volume (The Helmholtz free energy)	
• The free energy and the change in the free energy of an ideal gas at	
constant temperature and pressure (The Gibbs free energy)	
• Spontaneity and changes in the free energy	
• The four criteria of equilibrium	
• Relation between change in the standard free energy and the equilibrium	<u>4</u>
constant (van't Hoff isotherm)	
Factors affecting equilibrium	
✓ Effect of changing concentration	
✓ Effect of changing pressure/volume and K_p and K_c	
 Effect of changing temperature 	
• physical equilibrium: Definition and brief explanation	
Exercises	
Final exam	2
Total contact hours	30

Second: Practical laboratory experiments

- Experiment 1: Thermal equilibrium and the zeroth law
- Experiment 2: Determination of ΔU from q and w
- Experiment 3: Determination of specific heat
- Experiment 4: Enthalpy and entropy changes for the fusion of water
- Experiment 5: Determination of enthalpies of solution of:
 - NH₄NO₃ in water
 - (COOH)₂ in water

Experiment - 6: Determination of enthalpy of neutralization

- Hydrochloric acid with sodium hydroxide
- Ethanoic acid with sodium hydroxide
- Experiment 7: Enthalpy of hydration of copper (II) sulfate
- Experiment 8: Determination of enthalpy of transition of solid salts
- Experiment 9: Determination of equilibrium constant (Partition coefficient) of:
 - I_2 between CCl_4 and H_2O
 - CH_3COOH between $C_6C_5CH_3$ and H_2O
 - C_6C_5COOH between $C_6C_5CH_3$ and H_2O
- Experiment 10: Determination of equilibrium constant (Solubility product) and the common ion effect

Third: Brief description

Importance of thermodynamics and terminology[3], Work and heat[3], The Zeroth law[2], The first law[4], Thermochemistry[4], The first law[4], The second law[5], The third law[2], The free energy and equilibrium[4].

No less than 10 laboratory experiments (2 contact hours every week) are carried out by students and covers different topics of the syllabus.

OR

- Importance of thermodynamics and terminology: The system, functions, Path, Types of processes[3].
- Work and heat: Work, heat capacities at constant V and P, thermal, and kinetic energy and temperature[3].
- The Zeroth law: Thermal equilibrium and Celsius scale[2].
- The first law: Internal energy, Joule and Joule-Thomson experiments, calculations of ΔU and $\Delta H[4]$.
- Thermochemistry: Enthalpies of some physical and chemical changes, factors affecting ΔH , ways of determining ΔH , Born-Haber cycle[4].
- The first law: Internal energy, Joule and Joule-Thomson experiments, calculations of ΔU and $\Delta H[4]$.
- The second law: Carnot cycle, the entropy, ΔS calculations[5].
- The third law: The absolute entropy, the residual entropy, heating curves, calculating ΔS from S°[2].
- The free energy and equilibrium: Gibbs and Helmholtz free energy, Spontaneity and free energy, criteria of equilibrium, van't Hoff isotherm, Factors affecting equilibrium, physical equilibrium[4].
- No less than 10 laboratory experiments (2 contact hours every week) are carried out by students and covers different topics of the syllabus.

Fourth: Evaluation

1. Distribution of the 100 grades over practical laboratory sessions and over theoretical chapters

Practical				30
Theoretical	Capter	Hours	Percentage	Grades
	CH 1	3	11.5%	08
	CH 2	3	11.5%	08
	CH 3	2	07.7%	06
	CH 4	4	15.4%	11
	CH 5	4	15.4%	11
	CH 6	4	15.4%	11
	CH 7	2	07.7	05
	CH 8	4	15.4%	10
Total		26	100%	70
Total				100

2. Distribution of the 100 grades over semester works and final exam

	Semester works		Final exam		
Practical	actical 20		10	10	
	CH 1 (08)	Homework & quizzes (06)	16	00	
	CH 2 (08)	Ist midterm exam(10)	16		
	CH 3 (06)	Homework & quizzes (7)			
Theoretica	CH 4 (11)	Ist midterm exam (10)			
1	CH 5 (11)		07	CH5(11)	20
	CH 6(11)	Homework & quizzes (07) 07		CH6 (11)	
	CH 7(05)		CH7 (05)	30	
	CH 8 (10)			CH 8 (10)	
Total		60		40	
Total		100			

- Distribution of the semester grades (60 grades)
 - \checkmark 20 grades (two third of the laboratory works)
 - ✓ 06 grades (Homework and quizzes: topics 1 and 2)
 - ✓ 10 grades (1^{st} midterm exam: topics 1 and 2)
 - \checkmark 07 grades (Homework and quizzes: topics 3 and 4)
 - ✓ 10 grades (1^{st} midterm exam: topics: 3 and 4)
 - \checkmark 07 grades (Homework and quizzes: topics 5, 6, 7 and 8) 60 total
- Distribution of the final exam grades (40 grades)
 - \checkmark 10 grades (one third of the laboratory works)
 - ✓ 30 grades (exam: topics 5, 6, 7 and 8)
 - 40 total

Homework: Each homework is two carefully chosen problems in every topic to be submitted on a specified with no chance for postponement