GE 403 Engineering Economy

Eng. Howaidi Alotaibi Civil Engineering Department E-mail halshaibani@ksu.edu.sa **Ex.1** DuraTech Manufacturing is evaluating a process improvement project. The estimated receipts and disbursements associated with the project are shown below. MARR is 10 percent/year. Should DuraTech implement the proposed process improvement **based on present worth**?

EOY	0	1	2	3	4	5
Receipts	\$0	\$600	\$600	\$700	\$700	\$700
Disbursements	\$1000	\$300	\$300	\$300	\$300	\$300

Pw = -1000 + 300 (P/A 10%, 5) + 100 (P/A 10%, 3)(P/F 10%, 2)

Solution

Pw = -1000 + 300 (3.79079) + 100 (2.48685)(0.82645) = 342.76

Since Pw > 0, the proposed process improvement should be implemented.

Ex.2 The engineering team at a company is planning to purchase an enterprise resource planning (ERP) system. The software and installation from Vendor A costs \$380,000 initially and is expected to increase revenue \$125,000 per year every year. The software and installation from Vendor **B** costs \$280,000 and is expected to increase revenue **\$95,000** per year. The company uses a 4-year planning horizon and a 10 percent per year MARR. (The "do nothing" alternative is feasible and assumed to have a Pw of \$0.) Which ERP system should be purchased based on <u>ranking and incremental</u> present worth analyses?

Solution

Ranking Approach

 $Pw)_{DN} = \$0$

 $Pw)_{\mathbf{B}} = -280,000 + 95,000(P/A \ 10\%, 4) = -280,000 + 95,000(3.16987) = \21137.65

 $Pw)_{A} = -380,000 + 125,000(P/A 10\%, 4) = -380,000 + 125,000(3.16987) = \16233.75

Solution

Incremental Approach

- Order alternatives from lowest to highest initial investment
- Determine incremental cash flows between alternatives
- Calculate Pw on incremental cash flows

 $Pw)_{B-DN} = -280,000 + 95,000(P/A 10\%, 4) = 21137.65 Pw > \$0, therefore B is better than doing nothing

 $Pw)_{A-B} = -100,000 + 30,000(P/A \ 10\%, 4) = -4903.9 Pw < \$0, therefore B is better than A

Ex.3 The engineering team at a company is planning to purchase an enterprise resource planning (ERP) system. The software and installation from Vendor A costs \$380,000 initially and is expected to increase revenue \$125,000 per year every year. The software and installation from Vendor **B** costs \$280,000 and is expected to increase revenue **\$95,000** per year. The company uses a 4-year planning horizon and a 10 percent per year MARR. Which ERP system should be purchased based on DPBP and PBP methods?

PBP method

EOY	CF Alt B	CumCF Alt B	CF Alt A	CumCF Alt A	
0	-280,000	-280,000	-380,000	-380,000	
1	95,000	-185,000	125,000	-255,000	
2	95,000	-90,000	125,000	-130,000	
3	95,000	5,000	125,000	-5,000	
4	95,000	100,000	125,000	120,000	
PBP	$2 + \frac{90,000}{95,000} = 2.$	95 years 🧲	$3 + \frac{5,000}{125,000} = 3.04$ years		

DPBP method

 $Pw)_{B} = -280,000 + 95,000(P/A \ 10\%, \ DPBP) = 0 \implies (P/A \ 10\%, \ DPBP) = 2.9473$ $OR = A \left[\frac{(1+i)^{n}-1}{i(1+i)^{n}} \right] = -280,000 + 95,000 \left[\frac{(1+0.1)^{n}-1}{0.1(1+0.1)^{n}} \right] = 0 \implies n = 3.66$ $Pw)_{A} = -380,000 + 125,000(P/A \ 10\%, \ DPBP) = 0 \implies (P/A \ 10\%, \ DPBP) = 3.04$ $OR = A \left[\frac{(1+i)^{n}-1}{i(1+i)^{n}} \right] = -380,000 + 125,000 \left[\frac{(1+0.1)^{n}-1}{0.1(1+0.1)^{n}} \right] = 0 \implies n = 3.8$ $To \ Find P \ Given A$ $n \ (P|A \ i\%, n)$ $I \ 0.90909$ $2 \ 1.73554$ $3 \ 2.48685$ $4 \ 3.16987$ $5 \ 3.79079$

DPBP method

EOY	CF Alt B	Cum(Pw) Alt B	CF Alt A	Cum(Pw) Alt A
0	-280,000	-280,000.00	-380,000	-380,000.00
1	95,000	-193,636.45	125,000	-266,363.75
2	95,000	-115,123.70	125,000	-163,057.50
3	95,000	-43,749.25	125,000	-69,143.75
4	95,000	21,137.65	125,000	16,233.75

By interpolation

<u>DPBP</u>=3.67

DPBP = 3.81

