GE 403
 Engineering Economy

Eng. Howaidi Alotaibi
Civil Engineering Department
E-mail halshaibani@ksu.edu.sa

Ex. 1 DuraTech Manufacturing is evaluating a process improvement project. The estimated receipts and disbursements associated with the project are shown below. MARR is 10 percent/year. Should DuraTech implement the proposed process improvement based on present worth?

Solution

EOY	0	1	2	3	4	5
Receipts	$\$ 0$	$\$ 600$	$\$ 600$	$\$ 700$	$\$ 700$	$\$ 700$
Disbursements	$\$ 1000$	$\$ 300$	$\$ 300$	$\$ 300$	$\$ 300$	$\$ 300$

$$
\begin{aligned}
& \mathrm{Pw}=-1000+300(\mathrm{P} / \mathrm{A} 10 \%, 5)+100(\mathrm{P} / \mathrm{A} 10 \%, 3)(\mathrm{P} / \mathrm{F} 10 \%, 2) \\
& \mathrm{Pw}=-1000+300(3.79079)+100(2.48685)(0.82645)=\$ 342.76
\end{aligned}
$$

Since $\mathrm{Pw}>0$, the proposed process improvement should be implemented.

Ex. 2 The engineering team at a company is planning to purchase an enterprise resource planning (ERP) system. The software and installation from Vendor A costs $\mathbf{\$ 3 8 0 , 0 0 0}$ initially and is expected to increase revenue $\mathbf{\$ 1 2 5 , 0 0 0}$ per year every year. The software and installation from Vendor B costs $\$ 280,000$ and is expected to increase revenue $\$ 95,000$ per year. The company uses a 4 -year planning horizon and a 10 percent per year MARR. (The "do nothing" alternative is feasible and assumed to have a Pw of \$0.) Which ERP system should be purchased based on ranking and incremental present worth analyses?

Solution

Ranking Approach

$$
\begin{aligned}
& P w)_{D N}=\$ 0 \\
& P w)_{B}=-280,000+95,000(\text { P/A } 10 \%, 4)=-280,000+95,000(3.16987)=\$ 21137.65 \\
& P w)_{A}=-380,000+125,000(\mathrm{P} / \mathrm{A} 10 \%, 4)=-380,000+125,000(3.16987)=\$ 16233.75
\end{aligned}
$$

Solution

Incremental Approach

- Order alternatives from lowest to highest initial investment
- Determine incremental cash flows between alternatives
- Calculate Pw on incremental cash flows

$$
\begin{aligned}
\mathrm{Pw})_{\mathrm{B}-\mathrm{DN}}= & -280,000+95,000(\mathrm{P} / \mathrm{A} 10 \%, 4)=\$ 21137.65 \\
& \mathrm{Pw}>\$ 0, \text { therefore B is better than doing nothing } \\
\mathrm{Pw})_{\mathrm{A}-\mathrm{B}}= & -100,000+30,000(\mathrm{P} / \mathrm{A} 10 \%, 4)=-\$ 4903.9 \\
& \mathrm{Pw}<\$ 0, \text { therefore B is better than A }
\end{aligned}
$$

Ex. 3 The engineering team at a company is planning to purchase an enterprise resource planning (ERP) system. The software and installation from Vendor A costs $\mathbf{\$ 3 8 0 , 0 0 0}$ initially and is expected to increase revenue $\mathbf{\$ 1 2 5 , 0 0 0}$ per year every year. The software and installation from Vendor B costs $\$ 280,000$ and is expected to increase revenue $\$ 95,000$ per year. The company uses a 4 -year planning horizon and a 10 percent per year MARR. Which ERP system should be purchased based on DPBP and PBP methods?

Solution
\$95,000/year

PBP method

EOY	CF Alt B	CumCF Alt B	CF Alt A	CumCF Alt A
0	$-280,000$	$-280,000$	$-380,000$	$-380,000$
1	95,000	$-185,000$	125,000	$-255,000$
2	95,000	$-90,000$	125,000	$-130,000$
3	95,000	5,000	125,000	$-5,000$
4	95,000	100,000	125,000	120,000
PBP	$2+\frac{90,000}{95,000}=2.95$ years	$3+\frac{5,000}{125,000}=3.04$ years		

DPBP method

$$
P \mathrm{P})_{\mathbf{B}}=-280,000+95,000(\mathrm{P} / \mathrm{A} 10 \%, \mathrm{DPBP})=0 \Longrightarrow \quad(\mathrm{P} / \mathrm{A} 10 \%, \mathrm{DPBP})=2.9473
$$

$$
\mathrm{OR}=A\left[\frac{(1+i)^{n}-1}{i(1+i)^{n}}\right]=-280,000+95,000\left[\frac{(1+0.1)^{n}-1}{0.1(1+0.1)^{n}}\right]=0 \Longrightarrow n=3.66
$$

$$
\mathrm{Pw})_{\mathrm{A}}=-380,000+125,000(\mathrm{P} / \mathrm{A} 10 \%, \mathrm{DPBP})=0 \Longrightarrow(\mathrm{P} / \mathrm{A} 10 \%, \mathrm{DPBP})=3.04
$$

To Find P
Given A
$\mathrm{n} \quad(P \mid A \mathrm{i} \%, \mathrm{n})$

$$
\mathrm{OR}=A\left[\frac{(1+i)^{n}-1}{i(1+i)^{n}}\right]=-380,000+125,000\left[\frac{(1+0.1)^{n}-1}{0.1(1+0.1)^{n}}\right]=0 \Rightarrow n=3.8
$$

Solution
\$95,000/year

DPBP method

EOY	CF Alt B	Cum(Pw) Alt B	CF Alt A	Cum(Pw) Alt A
0	$-280,000$	$-280,000.00$	$-380,000$	$-380,000.00$
1	95,000	$-193,636.45$	125,000	$-266,363.75$
2	95,000	$-115,123.70$	125,000	$-163,057.50$
3	95,000	$-43,749.25$	125,000	$-69,143.75$
4	95,000	$21,137.65$	125,000	$16,233.75$

By interpolation
DPBP $=3.67$
DPBP $=3.81$

The END

