Chapter 9

Depreciation

Ex. A universal testing machine (UTM) is purchased for SR 1.6 million. It is expected to be of use to the company for 5 years, after which it will be sold for SR

100,000. Determine the depreciation deduction and the resulting unrecovered investment (Book value) during each year of the asset's life.
i. Use straight-line depreciation.
ii. Use declining balance depreciation, with a rate that ensures the book value equals the salvage value.
iii. Use double declining balance depreciation.
iv. Use double declining balance, switching to straight-line depreciation.
v. Use sum-of-years'-digits depreciation.

Solution

Straight-Line (SLN) Depreciation

$P=S R 1600,000 ; F=S R 100,000 ; n=5$

$$
d_{t}=\frac{P-F}{n} \quad d_{t}=\frac{1,600,000-100,000}{5}=300,000
$$

$$
B_{t}=P-t d_{t}=1,600,000-300,000 t
$$

$\boldsymbol{E O Y}$	$\boldsymbol{d}_{\boldsymbol{t}}$	$\boldsymbol{B}_{\boldsymbol{t}}$
0	-	$1,600,000$
1	300,000	$1,300,000$
2	300,000	$1,000,000$
3	300,000	700,000
4	300,000	400,000
5	300,000	100,000

Solution

Declining Balance (DB) Depreciation

$$
\begin{aligned}
& d_{t}=p P(1-p)^{t-1} \quad B_{t}=P(1-p)^{t} \quad p=1-\left(\frac{F}{P}\right)^{\frac{1}{n}} \\
& p=1-\left(\frac{100,000}{1,600,000}\right)^{\frac{1}{5}}=0.42565 \quad \boldsymbol{d}_{\boldsymbol{t}}=0.42565 \times 1,600,000(1-0.42565)^{t-1} \\
& d_{t}=681040 \times 0.57435^{t-1} \quad B_{t}=1,600,000 \times 0.57435^{t}
\end{aligned}
$$

$\boldsymbol{E O Y}$	$\boldsymbol{d}_{\boldsymbol{t}}$	$\boldsymbol{B}_{\boldsymbol{t}}$
0	-	$1,600,000$
1	681,040	918,960
2	$391,155.32$	$527,804.68$
3	224,660	$303,144.68$
4	$129,033.51$	$174,111.17$
5	$74,110.39$	100,000

Solution

Double Declining Balance (DDB) Depreciation

$$
\begin{gathered}
d_{t}=p P(1-p)^{t-1} \quad B_{t}=P(1-p)^{t} \quad p=\frac{2}{n}=\frac{2}{5}=0.4 \\
d_{t}=0.4 \times 1,600,000(1-0.4)^{t-1} \\
d_{t}=640,000 \times 0.6^{t-1} \quad B_{t}=1,600,000 \times 0.6^{t}
\end{gathered}
$$

$\boldsymbol{E O Y}$	$\boldsymbol{d}_{\boldsymbol{t}}$	$\boldsymbol{B}_{\boldsymbol{t}}$
0	-	$1,600,000$
1	640,000	960,000
2	384,000	576,000
3	230,400	345,600
4	138,240	207,360
5	82,944	124,416

Solution

DDB switching to SLN Depreciation

Switching from DDB to SLN as soon as

$$
\begin{array}{r}
\frac{B_{t-1}-F}{n-(t-1)}>p B_{t-1} \\
\frac{B_{t-1}-100,000}{5-(t-1)}>0.4 B_{t-1}
\end{array}
$$

$\boldsymbol{E O Y}$	DDB $\boldsymbol{d}_{\boldsymbol{t}}$ $0.4 B_{t-1}$		SLN $\boldsymbol{d}_{\boldsymbol{t}}$ $\frac{B_{t-1}-100,000}{}$ $5-(t-1)$	$\boldsymbol{B}_{\boldsymbol{t}}$
0	-		-	$1,600,000$
1	640,000	$>$	300,000	960,000
2	384,000	$>$	215,000	576,000
3	230,400	$>$	$158,666.67$	345,600
4	138,240	$>$	122,800	207,360
5	82,944	$<$	107,360	100,000

Solution

Sum of Years' Digits (SYD) Depreciation

$$
\begin{array}{lc}
d_{t}=\frac{n-(t-1)}{n(n+1) / 2}(P-F) & B_{t}=F+\frac{(n-t)(n-t+1)}{[n(n+1)]}(P-F) \\
d_{t}=\frac{5-(t-1)}{15}(1,500,000) & B_{t}=100,000+\frac{(5-t)(5-t+1)}{30}(1,500,000)
\end{array}
$$

$\boldsymbol{E O Y}$	$\boldsymbol{d}_{\boldsymbol{t}}$	$\boldsymbol{B}_{\boldsymbol{t}}$
0	-	$1,600,000$
1	500,000	$1,100,000$
2	400,000	700,000
3	300,000	400,000
4	200,000	200,000
5	100,000	100,000

