Chapter 9 Depreciation

Ex. A universal testing machine (UTM) is purchased for SR 1.6 million. It is expected to be of use to the company for 5 years, after which it will be sold for SR 100,000. Determine the depreciation deduction and the resulting unrecovered investment (Book value) during each year of the asset's life.

- i. Use straight-line depreciation.
- ii. Use declining balance depreciation, with a rate that ensures the book value equals the salvage value.
- iii. Use double declining balance depreciation.
- iv. Use double declining balance, switching to straight-line depreciation.
- v. Use sum-of-years'-digits depreciation.

Straight-Line (SLN) Depreciation

P = SR 1600,000; F = SR 100,000; n = 5

$$d_t = \frac{P-F}{n}$$
 $d_t = \frac{1,600,000-100,000}{5} = 300,000$

 $B_t = P - td_t = 1,600,000 - 300,000t$

ΕΟΥ	d_t	B _t
0	-	1,600,000
1	300,000	1,300,000
2	300,000	1,000,000
3	300,000	700,000
4	300,000	400,000
5	300,000	100,000

Declining Balance (DB) Depreciation

 $d_t = pP(1-p)^{t-1}$ $B_t = P(1-p)^t$ $p = 1 - \left(\frac{F}{P}\right)^{\frac{1}{n}}$

 $p = 1 - \left(\frac{100,000}{1,600,000}\right)^{\frac{1}{5}} = 0.42565$ $d_t = 0.42565 \times 1,600,000(1-0.42565)^{t-1}$

 $d_t = 681040 \times 0.57435^{t-1}$ $B_t = 1,600,000 \times 0.57435^t$

ΕΟΥ	d_t	B _t	
0	-	1,600,000	
1	681,040	918,960	
2	391,155.32	527,804.68	
3	224,660	303,144.68	
4	129,033.51	174,111.17	
5	74,110.39	100,000	

Double Declining Balance (DDB) Depreciation

 $d_t = pP(1-p)^{t-1}$ $B_t = P(1-p)^t$ $p = \frac{2}{n} = \frac{2}{5} = 0.4$

 $d_t = 0.4 \times 1,600,000(1-0.4)^{t-1}$

 $d_t = 640,000 \times 0.6^{t-1}$ $B_t = 1,600,000 \times 0.6^t$

ΕΟΥ	d _t	B _t	
0	-	1,600,000	
1	640,000	960,000	
2	384,000	576,000	
3	230,400	345,600	
4	138,240	207,360	
5	82,944	124,416	

DDB switching to SLN Depreciation

Switching from DDB to SLN as soon as

$$\frac{B_{t-1}-F}{n-(t-1)} > pB_{t-1}$$

$$\frac{B_{t-1} - 100,000}{5 - (t-1)} > 0.4B_{t-1}$$

ΕΟΥ	$\begin{array}{c} \textbf{DDB} \ \boldsymbol{d}_{t} \\ 0.4B_{t-1} \end{array}$		$\frac{\text{SLN } d_t}{\frac{B_{t-1} - 100,000}{5 - (t-1)}}$	B _t
0	-		-	1,600,000
1	640,000	>	300,000	960,000
2	384,000	>	215,000	576,000
3	230,400	\rightarrow	158,666.67	345,600
4	138,240	>	122,800	207,360
5	82,944	<	107,360	100,000

Sum of Years' Digits (SYD) Depreciation

$$d_t = \frac{n - (t - 1)}{n(n + 1)/2} \left(P - F \right) \qquad B_t = F + \frac{(n - t)(n - t + 1)}{[n(n + 1)]} \left(P - F \right)$$

$$d_t = \frac{5 - (t - 1)}{15} (1, 500, 000) \qquad B_t = 100,000 + \frac{(5 - t)(5 - t + 1)}{30} (1, 500, 000)$$

ΕΟΥ	d_t	B_t
0	-	1,600,000
1	500,000	1,100,000
2	400,000	700,000
3	300,000	400,000
4	200,000	200,000
5	100,000	100,000