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Definition

Let f : [a, b] −→ R+ be a non neg-

ative continuous function, the integral∫ b

a

f (x)dx represents the area of the re-

gion Rx delimited by the graphs of f , the

axis of equations: x = a, x = b and

y = 0 (the x−axis).

x

y

y = f (x)

a b

Rx
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Theorem

If f and g are two continuous functions
on [a, b] and f (x) ≥ g(x), ∀x ∈ [a, b].
Then the area A of the region bounded
by the graphs of f ,g , x = a and x = b
is

A =

∫ b

a

f (x)− g(x)dx .

x

y

y = f (x)

y = g(x)

x

y

A
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Example

Let f (x) = x2 + 1 and g(x) = x .

The area of the shaded region is

A =

∫ 3
2

− 1
2

(x2 + 1− x)dx =
13

6
.

x

y
y = x2 + 1

y = x

3
2

− 1
2

x

y
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Example

Let f (x) = x2 − 2 and g(x) = x + 1 on the interval [0, 2].
The area of the region between
the graphs of the functions f and
g on the interval [0, 2] is

A =

∫ 2

0
(x + 1)− (x2 − 2)dx

=

∫ 2

0
(x + 3− x2)dx

=
16

3
.

x

y
y = x2 − 2

y = x + 1

x
2
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Remark

If f and g are two continuous functions on [a, b]. Then the area A
of the region bounded by the graphs of f and g is

A =

∫ b

a
|f (x)− g(x)|dx .

For example if there is c ∈]a, b[ such that f (x) ≥ g(x), ∀x ∈ [a, c]
and
f (x) ≤ g(x), ∀x ∈ [c , b], then

A =

∫ c

a
f (x)− g(x)dx +

∫ b

c
g(x)− f (x)dx .

Mongi Blel & Tariq Al Fadhel Applications of Definite Integrals



Area of Plane Regions
Volume of Solid of Revolution

Arc Length and Surfaces of Revolution

Example

Consider the functions f (x) = x + 6, g(x) = x3 and h(x) = −1

2
x .

The area A of the region R bounded by the graphs of the functions
f , g and h
f (x) = h(x) ⇐⇒ x = −4,

g(x) = h(x) ⇐⇒ x = 0,

f (x) = g(x) ⇐⇒ x3−x−6 = 0. x = 2

is the unique solution of this equation.

We have f (−4) = h(−4) = 2,

g(0) = h(0) = 0 and

f (2) = g(2) = 8.

x

y
f (x) = x + 6

g(x) = x3

h(x) = − x
2

2−4

x

y

The

area of the region is equal to:

A =

∫ 0

−4

(f (x)− h(x)) dx +

∫ 2

0

(f (x)− g(x)) dx .

A =

∫ 0

−4

(
(x + 6) +

1

2
x

)
dx +

∫ 2

0

(
(x + 6)− x3

)
dx = 22.
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Example

The area of the region between the graphs of the functions:
f (x) = 1

3(x
2 − 4) and g(x) = 1

3(x + 2) if x is restricted to the
interval [1, 4].

f (x) = g(x) ⇐⇒ x2 − x − 6 = 0.

The only solution of this equation on

the interval [1, 4] is x = 3 and we have

f (3) = g(3) = 5
3
.

We have f ≤ g on the interval [1, 3] and

g ≤ f on the interval [3, 4]. Then

x

y
f (x) = 1

3
(x2 − 4)

g(x) = 1
3
(x + 2)

x

y

1 3 4

A =

∫ 3

1

(g(x)− f (x)) dx +

∫ 4

3

(f (x)− g(x)) dx

=
1

3

∫ 3

1

(
(x + 2)− (x2 − 4)

)
dx +

1

3

∫ 4

3

(
(x2 − 4)− (x + 2)

)
dx =

61

18
.
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The Disk Method

Let f : [a, b] −→ R+ be a non negative continuous function and Rx

the region delimited by the graph of f and the axis: x = a, x = b
and the x−axis. If the region Rx is revolved around the x-axis, the
resulting solid is called: the solid of revolution generated by the
region Rx .
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Examples

1 If f : [a, b] −→ R is a constant c > 0, then the region under
the graph of f on the interval [a, b] is a rectangle. The solid
generated by revolving this region around the x-axis is a
circular right cylinder.

2 Consider the region under the graph of the function
f (x) =

√
4− x2

for x ∈ [−2, 2]. If we revolve the region Rx around the x-axis,
the solid generated is a ball of radius r = 2.
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Theorem

Let f : [a, b] −→ R+ be a contin-
uous function. The volume V of
the solid of revolution generated
by revolving the region bounded
by the graphs of f , y = 0 x = a
and x = b is given by

x

y

a b

R

V =

∫ b

a
πf 2(x)dx .
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Example

Let f be the function defined on
the interval [−1, 2] by f (x) = x2+
1. The volume of the solid ob-
tained by revolving the region un-
der the graph of f around the x-
axis is

π

∫ 2

−1
(x2 + 1)2dx =

78π

5
. x

y y = x2 + 1

−1 2
x

y
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Remark
Let g be a positive continuous
function on the interval [c , d ] and
Ry the region bounded by: the
graph of the function x = g(y),
the axis y = c , y = d and y−axis.
The volume of the solid of revolu-
tion of the region Ry around the
y -axis is:

x

y
x = g(y)d

c

Ry

V = π

∫ d

c
g2(y)dy .Mongi Blel & Tariq Al Fadhel Applications of Definite Integrals
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Example

If g(y) = y2 − 4 defined on the
interval [0, 2]. The volume of the
solid obtained by revolving the re-
gion under the graph of g around
the y -axis is:

V = π

∫ 2

0
(y2 − 4)2dy =

256

15
π.

x

y

x = y2 − 4

x
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Washer Method

Theorem

Let f , g : [a, b] −→ R+ be two

continuous functions such that

f (x) ≥ g(x) ≥ 0, ∀x ∈ [a, b]. If R is

the region between the graph of f and

the graph of g . The volume of the solid

obtained by revolving the region R

around the x-axis is equal to

x

y
f (x)

g(x)

R

π

∫ b

a

(
f 2(x)− g 2(x)

)
dx .

This formula can be interpreted as:

V = π

∫ b

a

(outer radius)2 − (inner radius)2dx .
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If R is the region bounded by the
graphs of x = f (y) and x = g(y),
where f (y) and g(y) continuous
functions defined on the interval
[c , d ] and satisfies 0 ≤ g ≤ f .
The volume of the solid of revo-
lution generated by revolving the
region R around the y−axis is

x

y

f (y)g(y)

R x

y

V = π

∫ d

c

[
f 2(y)− g2(y)

]
dy .
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Examples

1

If f (x) = cos(x) and g(x) =
sin(x) on the interval [0, π4 ]. The
volume of the solid of revolving
R between the graph of f and g
around the x-axis is

x

y
cos(x)

sin(x)

V = π

∫ π
4

0

(
cos2(x)− sin2(x)

)
dx = π

∫ π
4

0
cos(2x)dx =

π

2
.
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2

Let f (x) =
√
x defined on the in-

terval [0, 4]. If R is the region un-
der the graph of f and S the solid
of revolution of R around the axis
y = 2. The volume of S is:

x

y √
x2

4

V = π

∫ 4

0

(
22 − (2−

√
x)2

)
dx =

40π

3
.

In this example, the outer radius is 2, the inner radius is
2− y = 2−

√
x .
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Examples

Use disk or washer method to find the volume of the solid of
revolution generated by revolving the region bounded by the
graphs of the following curves

1 y =
1

x
, x = 1, x = 3 and y = 0, around the x−axis.

V = π

∫ 3

1

dx

x2
=

2π

3
.

x

y

1 3
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2 y = 4x − x2 and y = x , around the x−axis.

4x − x2 = 4 − (x − 2)2 is a parabola
opens downward with vertex (2,4) and
y = x is a straight line passing through
the origin.
x = 4x− vx2 ⇐⇒ x = 0 , x = 3. The
points of intersection of y = 4x − x2

and y = x are (0, 0) and (3, 3). Using
Washer Method, we get

x

y

y = 4x − x2

y = x

3

V = π

∫ 3

0

[
(4x − x2)2 − x2

]
dx

= π

∫ 3

0

[
x4 − 8x3 + 15x2

]
dx =

108

5
π.
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3 x =
√
y , x = 0 and y = 4, around the y−axis

Using Disk Method, we get

V = π

∫ 4

0
(
√
y)2 dy =

π

[
y2

2

]4
0

= 8π.
x

y
x =

√
y

y = 4

2
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The Cylindrical Shells Method

Theorem

Let f : [a, b] −→ R+ be a continu-
ous function and R the region un-
der the graph of f on the interval
[a, b]. The volume V of the solid
of revolution generated by revolv-
ing the region R around the y -axis
is given by

x

y
y = f (x)

a b

R

V = 2π

∫ b

a
xf (x)dx .
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Example

Let f : [2, 11] −→ R+ be the function defined by
√
x − 2. The

volume of the solid of revolution generated by revolving the region
under the graph of f around the y -axis is

V = 2π

∫ 11

2
x
√
x − 2dx

x−2=t2
= 4π

∫ 3

0
(2t2 + t4)dt = 12π

111

5
.
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Remark

Consider the region R bounded by
the graphs of the curves of g(y),
y = d , y = c and the y−axis. Us-
ing cylindrical shells method, the
volume of the solid of revolution
generated by revolving the region
R around the x−axis is

V = 2π

∫ d

c
y g(y) dy .

x

y

x = g(y)

c

d

R
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Examples

We use cylindrical shells method to find the volume of the solid of
revolution generated by revolving the region bounded by the
graphs of the following curves:
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1

y = 2x − x2 and y = 0, around the
y−axis.
y = 2x−x2 = 1− (x−1)2 is a parabola
opens downward with vertex (1, 1). 2x−
x2 = 0 ⇐⇒ x = 0 , x = 2, then
the points of intersection between y =
2x − x2 and y = 0 are (0, 0) and (2, 0).
Using Cylindrical shells method, we get

x

y

y = 2x − x2

1 2

V = 2π

∫ 2

0

x(2x − x2) dx = 2π

∫ 2

0

(2x2 − x3) dx =
8

3
π.
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2 y = cos x , y = 2x + 1 and x = π
2
, around the y−axis.

The line y = 2x + 1 passes through the
point (0, 1). The desired region is under
the line y = 2x +1 and above the curve
of y = cos x on the interval

[
0, π

2

]
.

Using Cylindrical shells method, we get
x

y
y = 2x + 1

π
2

V = 2π

∫ π
2

0

x [(2x + 1)− cos x ] dx

= 2π

∫ π
2

0

(2x2 + x) dx − 2π

∫ π
2

0

(x cos(x)) dx

= 2π

[
2x3

3
+

x2

2

]π
2

0

− 2π [x sin(x) + cos(x)]
π
2
0

= 2π

(
π3

12
+

π2

8

)
− 2π

(π
2
− 1

)
.
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Arc Length

Definition

Let f : I −→ R be a function. We say that f is continuously
differentiable if f is differentiable and f ′ is itself continuous on I .

Definition

Let f : [a, b] −→ R+ be a continuously differentiable function. The
length of the curve (x , f (x)), for x ∈ [a, b] is defined by:

Lba =

∫ b

a

√
1 + (f ′(x))2dx .
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Example

Let f : [0, π4 ] −→ R defined by: f (x) = ln(cos(x)). The length of
the curve defined by f is given by:

L =

∫ π
4

0

√
1 + tan2(x)dx =

∫ π
4

0
sec(x)dx = ln(

√
2 + 1).
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Definition

Let f : [a, b] −→ R+ be a continuously differentiable function.
Then the arc length function “s” for the graph of f on [a, b] is
defined by:

s(x) =

∫ x

a

√
1 + (f ′(t))2dt.

We have

ds =
√
1 + (f ′(x))2dx .
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Examples

1 The arc length of the curve defined by the function

f (x) =
x3

12
+

1

x
on the interval [1, 2] is given by:

L =

∫ 2

1

√
1 +

(
x2

4
− 1

x2

)2

dx =

∫ 2

1

√
x4

16
+

1

2
+

1

x4
dx

=

∫ 2

1

√(
x2

4
+

1

x2

)2

dx =

∫ 2

1

(
x2

4
+

1

x2

)
dx =

13

12

2 The arc length of the curve defined by the function
f (x) = cosh(x) on the interval [0, 2] is given by:

L =

∫ 2

0

√
1 + sinh2(x) dx =

∫ 2

0
cosh(x) dx = sinh(2).
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3 Let g be the function defined by: g(y) =
√
25− y2 on the

interval [−5, 5]. The arc length of the curve defined by the
function g is equal to half of the perimeter of the circle
x2 + y2 = 25, the arc length is equal to 5π.

g ′(y) =
−y√
25− y2

. Then the arc length of the curve defined

by the function g on the interval [−5, 5] is given by:

L =

∫ 5

−5

√
1 +

y2

25− y2
dy = 5

∫ 5

−5

dy√
25− y2

= 5
[
sin−1

(y
5

)]5
−5

= 5π.
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4 The arc length of the curve defined by the function

f (x) = 1 +
2

3
x

3
2 on the interval [0, 3] is:

L =

∫ 3

0

√
1 +

(
x

1
2

)2
dx =

∫ 3

0

√
1 + x dx =

∫ 3

0
(1 + x)

1
2 dx

=

[
2

3
(1 + x)

3
2

]3
0

=
14

3
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Surfaces of Revolution

Theorem

Let f : [a, b] −→ R+ be a con-
tinuously differentiable function.
The area of the surface generated
by revolving the curve y = f (x)
around the x-axis denoted by S is
given by

x

y y = f (x)

a b

S =

∫ b

a
2π|f (x)|

√
1 + (f ′(x))2 dx .
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Example

Let f be the function defined on the interval [0, 1] by: f (x) =
x3

3
.

The surface of revolution of the graph of f around the x−axis is

S = 2π

∫ 1

0

x3

3

√
1 + x4dx

t2=1+x4
=

π

3

∫ √
2

1
t2dt =

π

9
(2
√
2− 1).
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Remark

If x = g(y), y ∈ [c, d ] and g con-
tinuously differentiable, the sur-
face area generated by revolving
the curve of g around the y -axis
is given by x

y
x = g(y)

d

c

S =

∫ d

c

2π|x |ds =

∫ d

c

2π|g(y)|ds =

∫ d

c

2π|g(y)|
√

1 + (g ′(y))2dy .
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Examples

1

Consider the function f (x) =
2
√
x defined on the interval [0, 1].

The surface area generated by re-
volving the curve defined by the
graph of the function f around the
x−axis is:

x

y
y = 2

√
x

1

S = 2π

∫ 1

0
2
√
x

√
1 +

[
1√
x

]2
dx = 4π

∫ 1

0

√
x + 1 dx

= 4π

[
2
(x + 1)

3
2

3

]1

0

=
8π

3

(
2
√
2− 1

)
.
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2 Consider the function f (x) =
√
4− x2 defined on the interval

[−2, 2].

The surface area generated by revolving
the curve defined by the graph of the
function f around the x−axis is:

x

y
y =

√
4− x2

2−2

S = 2π

∫ 2

−2

√
4− x2

√
1 +

(
−x√
4− x2

)2

dx

= 2π

∫ 2

−2

√
4− x2

√
(4− x2) + x2

4− x2
dx

= 2π

∫ 2

−2

√
4− x2

2√
4− x2

dx

= 4π

∫ 2

−2

dx = 4π [x ]2−2 = 16π.

Note: It is the surface area of the sphere with radius 2, and it is equal to
4π(2)2 = 16π
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