Applications of Definite Integrals

Mongi Blel \& Tariq AI Fadhel
Department of Mathematics
King Saud University

January 22, 2023

Definition

Let $f:[a, b] \longrightarrow \mathbb{R}^{+}$be a non negative continuous function, the integral $\int_{a}^{b} f(x) d x$ represents the area of the region R_{x} delimited by the graphs of f, the axis of equations: $x=a, x=b$ and
 $y=0$ (the x-axis).

Theorem

If f and g are two continuous functions on $[a, b]$ and $f(x) \geq g(x), \forall x \in[a, b]$. Then the area A of the region bounded by the graphs of $f, g, x=a$ and $x=b$ is

$$
A=\int_{a}^{b} f(x)-g(x) d x .
$$

Example

Let $f(x)=x^{2}+1$ and $g(x)=x$.

The area of the shaded region is
$A=\int_{-\frac{1}{2}}^{\frac{3}{2}}\left(x^{2}+1-x\right) d x=\frac{13}{6}$.

Example

Let $f(x)=x^{2}-2$ and $g(x)=x+1$ on the interval $[0,2]$. The area of the region between the graphs of the functions f and g on the interval $[0,2]$ is

$$
\begin{aligned}
A & =\int_{0}^{2}(x+1)-\left(x^{2}-2\right) d x \\
& =\int_{0}^{2}\left(x+3-x^{2}\right) d x \\
& =\frac{16}{3}
\end{aligned}
$$

Remark

If f and g are two continuous functions on $[a, b]$. Then the area A of the region bounded by the graphs of f and g is
$A=\int_{a}^{b}|f(x)-g(x)| d x$.
For example if there is $c \in] a, b[$ such that $f(x) \geq g(x), \forall x \in[a, c]$ and
$f(x) \leq g(x), \forall x \in[c, b]$, then
$A=\int_{a}^{c} f(x)-g(x) d x+\int_{c}^{b} g(x)-f(x) d x$.

Example

Consider the functions $f(x)=x+6, g(x)=x^{3}$ and $h(x)=-\frac{1}{2} x$. The area A of the region R bounded by the graphs of the functions f, g and h
$f(x)=h(x) \Longleftrightarrow x=-4$,
$g(x)=h(x) \Longleftrightarrow x=0$,
$f(x)=g(x) \Longleftrightarrow x^{3}-x-6=0 . x=2$ is the unique solution of this equation.
We have $f(-4)=h(-4)=2$,
$g(0)=h(0)=0$ and
$f(2)=g(2)=8$.

area of the region is equal to:

$$
A=\int_{-4}^{0}(f(x)-h(x)) d x+\int_{0}^{2}(f(x)-g(x)) d x .
$$

$A=\int_{-4}^{0}\left((x+6)+\frac{1}{2} x\right) d x+\int_{0}^{2}\left((x+6)-x^{3}\right) d x=22$.

Example

The area of the region between the graphs of the functions: $f(x)=\frac{1}{3}\left(x^{2}-4\right)$ and $g(x)=\frac{1}{3}(x+2)$ if x is restricted to the interval [1, 4].
$f(x)=g(x) \Longleftrightarrow x^{2}-x-6=0$. The only solution of this equation on the interval $[1,4]$ is $x=3$ and we have $f(3)=g(3)=\frac{5}{3}$.
We have $f \leq g$ on the interval $[1,3]$ and $g \leq f$ on the interval [3, 4]. Then

$$
\begin{aligned}
A & =\int_{1}^{3}(g(x)-f(x)) d x+\int_{3}^{4}(f(x)-g(x)) d x \\
& =\frac{1}{3} \int_{1}^{3}\left((x+2)-\left(x^{2}-4\right)\right) d x+\frac{1}{3} \int_{3}^{4}\left(\left(x^{2}-4\right)-(x+2)\right) d x=\frac{61}{18} .
\end{aligned}
$$

The Disk Method

Let $f:[a, b] \longrightarrow \mathbb{R}^{+}$be a non negative continuous function and R_{x} the region delimited by the graph of f and the axis: $x=a, x=b$ and the x-axis. If the region R_{x} is revolved around the x-axis, the resulting solid is called: the solid of revolution generated by the region R_{x}.

Examples

(1) If $f:[a, b] \longrightarrow \mathbb{R}$ is a constant $c>0$, then the region under the graph of f on the interval $[a, b]$ is a rectangle. The solid generated by revolving this region around the x-axis is a circular right cylinder.
(2) Consider the region under the graph of the function $f(x)=\sqrt{4-x^{2}}$ for $x \in[-2,2]$. If we revolve the region R_{x} around the x-axis, the solid generated is a ball of radius $r=2$.

Theorem

Let $f:[a, b] \longrightarrow \mathbb{R}^{+}$be a continuous function. The volume V of the solid of revolution generated by revolving the region bounded by the graphs of $f, y=0 x=a$ and $x=b$ is given by

$$
V=\int_{a}^{b} \pi f^{2}(x) d x
$$

Example

Let f be the function defined on the interval $[-1,2]$ by $f(x)=x^{2}+$ 1. The volume of the solid obtained by revolving the region under the graph of f around the x axis is
$\pi \int_{-1}^{2}\left(x^{2}+1\right)^{2} d x=\frac{78 \pi}{5}$.

Remark

Let g be a positive continuous function on the interval $[c, d]$ and R_{y} the region bounded by: the graph of the function $x=g(y)$, the axis $y=c, y=d$ and y-axis. The volume of the solid of revolution of the region R_{y} around the y-axis is:

Example

If $g(y)=y^{2}-4$ defined on the interval $[0,2]$. The volume of the solid obtained by revolving the region under the graph of g around the y-axis is:

$$
V=\pi \int_{0}^{2}\left(y^{2}-4\right)^{2} d y=\frac{256}{15} \pi .
$$

Washer Method

Theorem

Let $f, g:[a, b] \longrightarrow \mathbb{R}^{+}$be two continuous functions such that $f(x) \geq g(x) \geq 0, \forall x \in[a, b]$. If R is the region between the graph of f and the graph of g. The volume of the solid obtained by revolving the region R around the x-axis is equal to

$$
\pi \int_{a}^{b}\left(f^{2}(x)-g^{2}(x)\right) d x
$$

This formula can be interpreted as:

$$
V=\pi \int_{a}^{b}(\text { outer radius })^{2}-(\text { inner radius })^{2} d x
$$

If R is the region bounded by the graphs of $x=f(y)$ and $x=g(y)$, where $f(y)$ and $g(y)$ continuous functions defined on the interval $[c, d]$ and satisfies $0 \leq g \leq f$. The volume of the solid of revolution generated by revolving the region R around the y-axis is

$$
V=\pi \int_{c}^{d}\left[f^{2}(y)-g^{2}(y)\right] d y
$$

Examples

If $f(x)=\cos (x)$ and $g(x)=$
$\sin (x)$ on the interval $\left[0, \frac{\pi}{4}\right]$. The
volume of the solid of revolving
R between the graph of f and g
around the x-axis is

$$
V=\pi \int_{0}^{\frac{\pi}{4}}\left(\cos ^{2}(x)-\sin ^{2}(x)\right) d x=\pi \int_{0}^{\frac{\pi}{4}} \cos (2 x) d x=\frac{\pi}{2}
$$

Let $f(x)=\sqrt{x}$ defined on the interval $[0,4]$. If R is the region un-
(2) der the graph of f and S the solid of revolution of R around the axis $y=2$. The volume of S is:

$$
V=\pi \int_{0}^{4}\left(2^{2}-(2-\sqrt{x})^{2}\right) d x=\frac{40 \pi}{3}
$$

In this example, the outer radius is 2 , the inner radius is $2-y=2-\sqrt{x}$.

Examples

Use disk or washer method to find the volume of the solid of revolution generated by revolving the region bounded by the graphs of the following curves
(1) $y=\frac{1}{x}, x=1, x=3$ and $y=0$, around the x-axis.

$$
V=\pi \int_{1}^{3} \frac{d x}{x^{2}}=\frac{2 \pi}{3}
$$

(2) $y=4 x-x^{2}$ and $y=x$, around the x-axis. $4 x-x^{2}=4-(x-2)^{2}$ is a parabola opens downward with vertex $(2,4)$ and $y=x$ is a straight line passing through the origin.
$x=4 x-v x^{2} \Longleftrightarrow x=0, x=3$. The points of intersection of $y=4 x-x^{2}$ and $y=x$ are $(0,0)$ and $(3,3)$. Using Washer Method, we get

$$
\begin{aligned}
V & =\pi \int_{0}^{3}\left[\left(4 x-x^{2}\right)^{2}-x^{2}\right] d x \\
& =\pi \int_{0}^{3}\left[x^{4}-8 x^{3}+15 x^{2}\right] d x=\frac{108}{5} \pi
\end{aligned}
$$

(3) $x=\sqrt{y}, x=0$ and $y=4$, around the y-axis

Using Disk Method, we get

$$
\begin{aligned}
& V=\pi \int_{0}^{4}(\sqrt{y})^{2} d y= \\
& \pi\left[\frac{y^{2}}{2}\right]_{0}^{4}=8 \pi
\end{aligned}
$$

The Cylindrical Shells Method

Theorem

Let $f:[a, b] \longrightarrow \mathbb{R}^{+}$be a continuous function and R the region under the graph of f on the interval $[a, b]$. The volume V of the solid of revolution generated by revolving the region R around the y-axis is given by

$$
V=2 \pi \int_{a}^{b} x f(x) d x
$$

Example

Let $f:[2,11] \longrightarrow \mathbb{R}^{+}$be the function defined by $\sqrt{x-2}$. The volume of the solid of revolution generated by revolving the region under the graph of f around the y-axis is

$$
V=2 \pi \int_{2}^{11} x \sqrt{x-2} d x \stackrel{x-2=t^{2}}{=} 4 \pi \int_{0}^{3}\left(2 t^{2}+t^{4}\right) d t=12 \pi \frac{111}{5}
$$

Remark

Consider the region R bounded by the graphs of the curves of $g(y)$, $y=d, y=c$ and the y-axis. Using cylindrical shells method, the volume of the solid of revolution generated by revolving the region R around the x-axis is
$V=2 \pi \int_{c}^{d} y g(y) d y$.

Examples

We use cylindrical shells method to find the volume of the solid of revolution generated by revolving the region bounded by the graphs of the following curves:
$y=2 x-x^{2}$ and $y=0$, around the y-axis.
$y=2 x-x^{2}=1-(x-1)^{2}$ is a parabola
(1) opens downward with vertex $(1,1)$. $2 x-$ $x^{2}=0 \Longleftrightarrow x=0, x=2$, then the points of intersection between $y=$ $2 x-x^{2}$ and $y=0$ are $(0,0)$ and $(2,0)$.
 Using Cylindrical shells method, we get

$$
V=2 \pi \int_{0}^{2} x\left(2 x-x^{2}\right) d x=2 \pi \int_{0}^{2}\left(2 x^{2}-x^{3}\right) d x=\frac{8}{3} \pi
$$

(2) $y=\cos x, y=2 x+1$ and $x=\frac{\pi}{2}$, around the y-axis.

The line $y=2 x+1$ passes through the point $(0,1)$. The desired region is under the line $y=2 x+1$ and above the curve of $y=\cos x$ on the interval $\left[0, \frac{\pi}{2}\right]$.
Using Cylindrical shells method, we get

$$
\begin{aligned}
V & =2 \pi \int_{0}^{\frac{\pi}{2}} x[(2 x+1)-\cos x] d x \\
& =2 \pi \int_{0}^{\frac{\pi}{2}}\left(2 x^{2}+x\right) d x-2 \pi \int_{0}^{\frac{\pi}{2}}(x \cos (x)) d x \\
& =2 \pi\left[\frac{2 x^{3}}{3}+\frac{x^{2}}{2}\right]_{0}^{\frac{\pi}{2}}-2 \pi[x \sin (x)+\cos (x)]_{0}^{\frac{\pi}{2}} \\
& =2 \pi\left(\frac{\pi^{3}}{12}+\frac{\pi^{2}}{8}\right)-2 \pi\left(\frac{\pi}{2}-1\right)
\end{aligned}
$$

Arc Length

Definition

Let $f: I \longrightarrow \mathbb{R}$ be a function. We say that f is continuously differentiable if f is differentiable and f^{\prime} is itself continuous on l.

Definition

Let $f:[a, b] \longrightarrow \mathbb{R}^{+}$be a continuously differentiable function. The length of the curve $(x, f(x))$, for $x \in[a, b]$ is defined by:

$$
L_{a}^{b}=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x .
$$

Example

Let $f:\left[0, \frac{\pi}{4}\right] \longrightarrow \mathbb{R}$ defined by: $f(x)=\ln (\cos (x))$. The length of the curve defined by f is given by:

$$
L=\int_{0}^{\frac{\pi}{4}} \sqrt{1+\tan ^{2}(x)} d x=\int_{0}^{\frac{\pi}{4}} \sec (x) d x=\ln (\sqrt{2}+1)
$$

Definition

Let $f:[a, b] \longrightarrow \mathbb{R}^{+}$be a continuously differentiable function. Then the arc length function " s " for the graph of f on $[a, b]$ is defined by:

$$
s(x)=\int_{a}^{x} \sqrt{1+\left(f^{\prime}(t)\right)^{2}} d t
$$

We have

$$
d s=\sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

Examples

(1) The arc length of the curve defined by the function

$$
\begin{aligned}
f(x) & =\frac{x^{3}}{12}+\frac{1}{x} \text { on the interval }[1,2] \text { is given by: } \\
L & =\int_{1}^{2} \sqrt{1+\left(\frac{x^{2}}{4}-\frac{1}{x^{2}}\right)^{2}} d x=\int_{1}^{2} \sqrt{\frac{x^{4}}{16}+\frac{1}{2}+\frac{1}{x^{4}}} d x \\
& =\int_{1}^{2} \sqrt{\left(\frac{x^{2}}{4}+\frac{1}{x^{2}}\right)^{2}} d x=\int_{1}^{2}\left(\frac{x^{2}}{4}+\frac{1}{x^{2}}\right) d x=\frac{13}{12}
\end{aligned}
$$

(2) The arc length of the curve defined by the function $f(x)=\cosh (x)$ on the interval $[0,2]$ is given by:

$$
L=\int_{0}^{2} \sqrt{1+\sinh ^{2}(x)} d x=\int_{0}^{2} \cosh (x) d x=\sinh (2)
$$

(3) Let g be the function defined by: $g(y)=\sqrt{25-y^{2}}$ on the interval $[-5,5]$. The arc length of the curve defined by the function g is equal to half of the perimeter of the circle $x^{2}+y^{2}=25$, the arc length is equal to 5π.
$g^{\prime}(y)=\frac{-y}{\sqrt{25-y^{2}}}$. Then the arc length of the curve defined by the function g on the interval $[-5,5]$ is given by:

$$
\begin{aligned}
L & =\int_{-5}^{5} \sqrt{1+\frac{y^{2}}{25-y^{2}}} d y=5 \int_{-5}^{5} \frac{d y}{\sqrt{25-y^{2}}} \\
& =5\left[\sin ^{-1}\left(\frac{y}{5}\right)\right]_{-5}^{5}=5 \pi
\end{aligned}
$$

(9) The arc length of the curve defined by the function $f(x)=1+\frac{2}{3} x^{\frac{3}{2}}$ on the interval $[0,3]$ is:

$$
\begin{aligned}
L=\int_{0}^{3} \sqrt{1+\left(x^{\frac{1}{2}}\right)^{2}} d x & =\int_{0}^{3} \sqrt{1+x} d x=\int_{0}^{3}(1+x)^{\frac{1}{2}} d x \\
& =\left[\frac{2}{3}(1+x)^{\frac{3}{2}}\right]_{0}^{3}=\frac{14}{3}
\end{aligned}
$$

Surfaces of Revolution

Theorem

Let $f:[a, b] \longrightarrow \mathbb{R}^{+}$be a continuously differentiable function. The area of the surface generated by revolving the curve $y=f(x)$ around the x-axis denoted by S is given by

$$
S=\int_{a}^{b} 2 \pi|f(x)| \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

Example

Let f be the function defined on the interval $[0,1]$ by: $f(x)=\frac{x^{3}}{3}$. The surface of revolution of the graph of f around the x-axis is

$$
S=2 \pi \int_{0}^{1} \frac{x^{3}}{3} \sqrt{1+x^{4}} d x \stackrel{t^{2}=1+x^{4}}{=} \frac{\pi}{3} \int_{1}^{\sqrt{2}} t^{2} d t=\frac{\pi}{9}(2 \sqrt{2}-1)
$$

Remark

If $x=g(y), y \in[c, d]$ and g continuously differentiable, the surface area generated by revolving the curve of g around the y-axis is given by

$$
S=\int_{c}^{d} 2 \pi|x| d s=\int_{c}^{d} 2 \pi|g(y)| d s=\int_{c}^{d} 2 \pi|g(y)| \sqrt{1+\left(g^{\prime}(y)\right)^{2}} d y
$$

Examples

Consider the function $f(x)=$ $2 \sqrt{x}$ defined on the interval $[0,1]$. The surface area generated by revolving the curve defined by the graph of the function f around the x-axis is:

$$
\begin{aligned}
S & =2 \pi \int_{0}^{1} 2 \sqrt{x} \sqrt{1+\left[\frac{1}{\sqrt{x}}\right]^{2}} d x=4 \pi \int_{0}^{1} \sqrt{x+1} d x \\
& =4 \pi\left[2 \frac{(x+1)^{\frac{3}{2}}}{3}\right]_{0}^{1}=\frac{8 \pi}{3}(2 \sqrt{2}-1)
\end{aligned}
$$

(2) Consider the function $f(x)=\sqrt{4-x^{2}}$ defined on the interval $[-2,2]$.

The surface area generated by revolving the curve defined by the graph of the function f around the x-axis is:

$$
\begin{aligned}
S & =2 \pi \int_{-2}^{2} \sqrt{4-x^{2}} \sqrt{1+\left(\frac{-x}{\sqrt{4-x^{2}}}\right)^{2}} d x \\
& =2 \pi \int_{-2}^{2} \sqrt{4-x^{2}} \sqrt{\frac{\left(4-x^{2}\right)+x^{2}}{4-x^{2}}} d x \\
& =2 \pi \int_{-2}^{2} \sqrt{4-x^{2}} \frac{2}{\sqrt{4-x^{2}}} d x \\
& =4 \pi \int_{-2}^{2} d x=4 \pi[x]_{-2}^{2}=16 \pi
\end{aligned}
$$

Note: It is the surface area of the sphere with radius 2 , and it is equal to $4 \pi(2)^{2}=16 \pi$

