The Vector Spaces

Mongi BLEL

King Saud University

January 2, 2024

Table of contents

- 1 Introduction to Vector Spaces
- 2 Vector Sub-Spaces
- 3 Linear Combination and Generating Sets
- 4 Linear Dependence and Independence
- 5 Base and Dimension
- 6 Coordinate System and Change of Basis

Rank of Matrix

Introduction to Vector Spaces

Definition

We say that a non empty set $\mathbb E$ is a vector space on $\mathbb R$ if:

- (Closure for the sum operation) $u + v \in \mathbb{E}$, $\forall u, v \in \mathbb{E}$.
- ② (Associativity of the sum operation) u + (v + w) = (u + v) + w, for all $u, v, w ∈ \mathbb{E}$
- (The identity element) There is 0 ∈ E called the identity element of the sum operation such that u + 0 = 0 + u = u, ∀u ∈ E.
- For all $u \in \mathbb{E}$, there is $v \in \mathbb{E}$ such that u + v = v + u = 0. The vector v is called the symmetric of u and written -u.

(Commutativity)
$$u + v = v + u$$
, $\forall u, v \in \mathbb{E}$.

- (The closure of the exterior operation) $\forall a \in \mathbb{R}$ and $u \in \mathbb{E}$, $au \in \mathbb{E}$,
- **2** If $u, v \in \mathbb{E}$ and $a \in \mathbb{R}$, then a(u + v) = au + av.
- If $u \in \mathbb{E}$ and $a, b \in \mathbb{R}$, then (a + b)u = au + bu,
- If $u \in \mathbb{E}$ and $a, b \in \mathbb{R}$, then (a.b)u = a(bu),
- If $u \in \mathbb{E}$, then 1.u = u.

Introduction to Vector Spaces

Vector Sub-Spaces Linear Combination and Generating Sets Linear Dependence and Independence Base and Dimension Coordinate System and Change of Basis Rank of Matrix

Examples

- **①** \mathbb{R}^n is a vector space .
- 2 The set $\{(x, y, 2x + 3y); x, y \in \mathbb{R}\}$ is a vector space.
- The set of polynomials 𝒫 = ℝ[X] is a vector space.
 Also the set of polynomials of degree less then n,
 𝒫_n = ℝ_n[X] is a vector space.

The Vector Sub-Spaces

Definition

Let V be a vector space and F a subset of V. We say that F is a sub-space of V if F is vector space with the same operations of the vector space V.

Theorem

```
Let V be a vector space and F a subset of V.
F is a sub-space of V if and only if
0 \in F,
```

2 If
$$u, v \in F$$
, then $u + v \in F$,

```
3 If u \in F, a \in \mathbb{R}, then au \in F.
```

Examples

• The set
$$F = \{ \begin{pmatrix} a & b \\ 0 & 2a - b \end{pmatrix}$$
; $a, b \in \mathbb{R} \}$ is a sub-space of $V = \mathcal{M}_2(\mathbb{R})$.

- Q Let A ∈ M_{m,n}(ℝ) be a matrix and F = {X ∈ ℝⁿ; AX = 0}.
 F is sub-space of V = ℝⁿ. (F is the set of solutions of the homogeneous system AX = 0).
- The set F = {(x, x + 1); x ∈ ℝ} is not a sub-space of ℝ² since (0,0) ∉ F.

Example

The set $W = \{A \in \mathcal{M}_n | A = -A^T\}$ is a sub-space of $\mathcal{M}_n(\mathbb{R})$. Indeed: if $A, B \in W$ and $\lambda \in \mathbb{R}$

$$(A+B)^{\mathsf{T}} = A^{\mathsf{T}} + B^{\mathsf{T}} = -A - B$$

and

$$(\lambda A)^T = \lambda A^T = -\lambda A.$$

Then W is a sub-space of \mathcal{M}_n .

Example

The set $E = \{(x, y) \in \mathbb{R}^2; xy = 0\}$ is not a sub-space since $(1, 0) \in E$ and $(0, 1) \in E$ but $(1, 0) + (0, 1) = (1, 1) \notin E$.

Definition

Let V be a vector space and let v_1, \ldots, v_n be a finite vectors in V. We say that a vector $w \in V$ is a linear combination of the vectors v_1, \ldots, v_n if there is $x_1, \ldots, x_n \in \mathbb{R}$ such that

$$w = x_1v_1 + \ldots + x_nv_n.$$

Example

The vector (4, 1, 1) is a linear combination of the vectors (1, 0, 2), (2, -1, 3), (0, -1, 1) because

$$(4,1,1) = -2(1,0,2) + 3(2,-1,3) - 4(0,-1,1).$$

Example

The vector (1,1,2) is not a linear combination of the vectors (1,0,2), (0,-1,1) because the linear system (1,1,2) = x(1,0,2) + y(0,-1,1) don't have a solution.

Example

In \mathbb{R}^4 is the vectors (a, 1, b, 1) and (a, 1, 1, b) are linear combination of the vectors $e_1 = (1, 2, 3, 4)$ and $e_2 = (1, -2, 3, -4)$. The vector $(a, 1, b, 1) \in \operatorname{Vect}(e_1, e_2)$ if and only if the linear system AX = B is consistent with $A = \begin{pmatrix} 1 & 1 \\ 2 & -2 \\ 3 & 3 \\ 4 & -4 \end{pmatrix}$ and $B = \begin{pmatrix} a \\ 1 \\ b \\ 1 \end{pmatrix}$. The system is not consistent because the second and the forth equa-

The system is not consistent because the second and the forth equations can not be true in the same time. ((2a-2b=1, 4a-4b=1))

The vector
$$(a, 1, 1, b) \in Vect(e_1, e_2)$$
 if and only if the linear system

$$AX = B$$
 is consistent with $A = \begin{pmatrix} 1 & 1 \\ 2 & -2 \\ 3 & 3 \\ 4 & -4 \end{pmatrix}$ and $B = \begin{pmatrix} a \\ 1 \\ 1 \\ b \end{pmatrix}$.
The system has a unique solution and in this case $a = \frac{1}{3}$ and $b = 2$.

Example

Let *E* be the vector sub-space of \mathbb{R}^3 generated by the vectors (2, 3, -1) and (1, -1, -2) and let *F* be the sub-space of \mathbb{R}^3 generated by the vectors (3, 7, 0) and (5, 0, -7). The sub-spaces *E* and *F* are equal.

$$\begin{cases} 2x + y = a \\ 3x - y = b \\ -x - 2y = c \end{cases}$$

This system is equivalent with the following system

$$\begin{cases} x + 2y = -c \\ -3y = a + 2c \\ -7y = b + 3c \end{cases}$$

This system is consistent if and only if 7a - 3b + 5c = 0.

We remark that the vectors (2, 3, -1) and (1, -1, -2) are solutions of the system, then $F \subset E$. With the same method, the vectors (2, 3, -1) and (1, -1, -2) are in the sub-space F. This proves that E = F.

Example

Is there $a, b \in \mathbb{R}$ such that the vector v = (-2, a, b, 5) is in the sub-space of \mathbb{R}^4 generated by the vectors u = (1, -1, 1, 2) and v = (-1, 2, 3, 1).

Solution

The vector v = (-2, a, b, 5) is in the sub-space of \mathbb{R}^4 generated by the vectors u = (1, -1, 1, 2) and v = (-1, 2, 3, 1) if the following linear system is consistent AX = B with $A = \begin{pmatrix} 1 & -1 \\ -1 & 2 \\ 1 & 3 \\ 2 & 1 \end{pmatrix}$ and

$$B = \begin{pmatrix} -2 \\ a \\ b \\ 5 \end{pmatrix}.$$

This system is consistent if and only if $3 = a - 2 = \frac{b+2}{4}$. Then a = 5 and b = 10.

Theorem

Let A be the matrix of type
$$(m, n)$$
 and let $X = \begin{pmatrix} x_1 \\ \vdots \end{pmatrix}$ be the

matrix of type (n, 1). If C_1, \ldots, C_n are the columns of the matrix A, then

 (x_n)

$$AX = x_1C_1 + \ldots + x_nC_n.$$

Corollary

Let A be a matrix of type (m, n). The linear system AX = B is consistent if and only if the matrix B is a linear combination of the columns of the matrix A.

Definition

Let $S = \{v_1, \ldots, v_n\}$ be a set of vectors in a vector space V. We say that the vector space V is generated (or spanned) by the set S if any vector in V is a linear combination of the vectors v_1, \ldots, v_n . (We say also that S is a spanning set of V).

Theorem

Let $S = \{v_1, \ldots, v_n\} \subset \mathbb{R}^m$ and A the matrix of type (m, n) with columns v_1, \ldots, v_n . The set S spans the vector space \mathbb{R}^m if and only if the system AX = B is consistent for all $B \in \mathbb{R}^m$.

Example

Determine whether the vectors $v_1 = (1, -1, 4)$, $v_2 = (-2, 1, 3)$, and $v_3 = (4, -3, 5)$ span \mathbb{R}^3 . We solve the following linear system AX = B, where $A = \begin{pmatrix} 1 & -2 & 4 \\ -1 & 1 & -3 \\ 4 & 3 & 5 \end{pmatrix}$, $B = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ for arbitrary $a, b, c \in \mathbb{R}$.

A reduced of the augmented matrix is given by:

$$\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \end{bmatrix} \begin{array}{c} -a - 2b \\ -a - b \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix} 7a + 11b + c \end{bmatrix}$$

This system has a solution only when 7a + 11b + c = 0. Thus, the vectors do not span \mathbb{R}^3 .

Example

Determine whether the vectors
$$v_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 and $v_2 = \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix}$,
span the vector space $F = \{ \begin{pmatrix} a & b \\ 0 & 2a - b \end{pmatrix}; a, b \in \mathbb{R} \}$.
 $\begin{pmatrix} a & b \\ 0 & 2a - b \end{pmatrix} = xv_1 + yv_2 \iff \begin{cases} x + 2y = a \\ x + y = b \\ x + 3y = 2a - b \end{cases}$.
This system has the unique solution $x = 2b - a$ and $y = a - b$.

Theorem

Let $S = \{v_1, \ldots, v_n\}$ be a set of vectors in a vector space V, then

- the set *W* of linear combinations of the vectors of *S* is a linear sub-space in *V*.
- W is the smallest sub-space of V which contains S.
 This sub-space is called the sub-space generated (or spanned) by the set S and denoted by (S) or Vect(S).

Example

Let
$$F = \left\{ \begin{pmatrix} a & b \\ 0 & 2a - b \end{pmatrix}; a, b \in \mathbb{R} \right\}.$$

 $\begin{pmatrix} a & b \\ 0 & 2a - b \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}.$ Then F is the sub-space of $V = \mathscr{M}_2(\mathbb{R})$ spanned by $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix} \right\}.$

Definition

We say that the set of vectors v_1, \ldots, v_n in a vector space V are linearly independent if the equation

$$x_1v_1+\ldots,+x_nv_n=0$$

has 0 as unique solution.

Example

The vectors u = (1, 1, -2), v = (1, -1, 2) and w = (3, 0, 2) are linearly independent in \mathbb{R}^3 .

The Vector Spaces

$$xu + yv + zw = (0, 0, 0) \iff \begin{cases} x + y + 3z = 0\\ x - y = 0\\ -2x + 2y + 2z = 0 \end{cases}$$

Mongi BLEL

This system has 0 as unique solution.

The matrix of this system is
$$\begin{pmatrix} 1 & 1 & 3 \\ 1 & -1 & 0 \\ -2 & 2 & 2 \end{pmatrix}$$
 and its determinant is -4 .

Example

The set of vectors { $P_1 = 1 + x + x^2$, $P_2 = 2 - x + 3x^2$, $P_3 = x - x^2$ } is linearly independent in \mathscr{P}_2 . $aP_1 + bP_2 + cP_3 = 0 \iff (a+2b) + (a-b+c)x + (a+3b-c)x^2 =$ $0 \iff \begin{cases} a+2b = 0\\ a-b+c = 0.\\ a+3b-c = 0 \end{cases}$

Definition

We say that the vectors v_1, \ldots, v_n in a vector space V are linearly dependent if they are not linearly independent.

Example

The vectors
$$u = (0, 1, -2, 1)$$
, $v = (1, 0, 2, -1)$ and $w = (3, 2, 2, -1)$ are linearly dependent in \mathbb{R}^4 .

$$xu + yv + zw = (0, 0, 0, 0) \iff \begin{cases} y + 3z = 0\\ x + 2z = 0\\ -2x + 2y + 2z = 0\\ x - y - z = 0 \end{cases}$$

This system has infinite solutions.

The extended matrix of this system is
$$\begin{bmatrix} 0 & 1 & 3 & | & 0 \\ 1 & 0 & 2 & 0 \\ -2 & 2 & 2 & | & 0 \\ 1 & -1 & -1 & | & 0 \end{bmatrix}$$
 and the reduced row form of this matrix is :
$$\begin{bmatrix} 1 & 0 & 2 & | & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$
.

Theorem

Let $S = \{v_1, \ldots, v_n\}$ be a set of vectors in a vector space V, with $n \ge 2$.

The set S is linearly dependent if and only if there is a vector of S which is a linear combination of the rest of vectors.

Theorem

Let $S = \{v_1, \ldots, v_n\} \subset \mathbb{R}^m$ and A the matrix of type (m, n) such that its columns are the vectors of S. The set S is linearly independent if and only if the homogeneous system AX = 0 has 0 as unique solution.

Examples

- If A is a matrix of type (m, n) with m < n. Then the homogeneous system AX = 0 has an infinite solutions.
- ② If $S = \{v_1, ..., v_n\} \subset \mathbb{R}^m$ with m < n, then the set S is linearly dependent.

Rank of Matrix

Base and Dimension

Definition

Let $S = \{v_1, \ldots, v_n\}$ be a set of vectors in a vector space V. We say that S is a basis of the vector space V if :

- The set S generates the vector space V
- 2 The set S is linearly independent.

Theorem

If $S = \{v_1, \ldots, v_n\}$ is a basis of the vector space V. Any vector $v \in V$ can be written uniquely as a linear combination of vectors in the basis S.

Remark

Let $S = \{e_1, \ldots, e_n\}$ be the set of the vectors in the vector space \mathbb{R}^n , where

$$e_1 = (1, 0, \ldots, 0), \ldots, e_k = (0, \ldots, 0, 1, 0, \ldots, 0), \ldots, e_n = (0, \ldots, 0, 1).$$

The set S is a basis of \mathbb{R}^n and is called the natural basis of \mathbb{R}^n .

Exercise

Prove that $S = \{1, X, \dots, X^n\}$ is a basis of the vector space \mathscr{P}_n .

Example

Let
$$v_1 = (\lambda, 1, 1)$$
, $v_2 = (1, \lambda, 1)$ and $v_3 = (1, 1, \lambda)$.
Find the values of $\lambda \in \mathbb{R}$ such that $\{v_1, v_2, v_3\}$ is a basis of the vector space \mathbb{R}^3 .

Solution

The set $\{v_1, v_2, v_3\}$ is linearly independent if 0 the unique solution of the equation

$$xv_1 + yv_2 + zv_3 = 0.$$

This is equivalent that the following matrix has an inverse :

$$A = \begin{pmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{pmatrix}.$$

Then $\lambda \notin \{-2, 1\}.$
The set $\{v_1, v_2, v_3\}$ generates the vector space \mathbb{R}^n because the linear system $AX = B$ is consistent for all $B \in \mathbb{R}^n$ since the matrix A has an inverse .

Theorem

Let $S = \{v_1, \ldots, v_n\}$ be a basis of the vector space V and let $T = \{u_1, \ldots, u_m\}$ be a set of vectors. If m > n, then T is linearly dependent.

Corollary

If $S = \{v_1, \ldots, v_n\}$ and $T = \{u_1, \ldots, u_m\}$ are basis of the vector space V, then m = n.

Definition

If $S = \{v_1, \ldots, v_n\}$ is a basis of the vector space V then the number of vectors n of S is called the dimension of the vector space V and denoted by: $\dim V = n$.

Theorem

Let V is a vector space of dimension n. If $S = \{v_1, \ldots, v_n\}$ in V. Then

S is linearly independent if and only if S generates the vector space V and this is equivalent also with S is a basis of V.

Theorem

If $S = \{v_1, \ldots, v_n\}$ generates the vector space V, then it contains a basis of the vector space V.

Remark

If $S = \{v_1, \ldots, v_m\} \subset \mathbb{R}^n$ is a set of vectors and F the vector sub-space generated by S. We have the following two algorithms to construct a basis of F.

- **O** Construct the matrix A such that its rows are the vectors of S
- 2 The non zeros rows of any row echelon form of the matrix A are a basis of the vector space $F = \langle S \rangle$.

Second Algorithm

- Construct the matrix A such that its columns are the vectors of S
- **2** Take any row echelon form C of the matrix A.
- Let C_{k1},... C_{kp} be the columns which contain a leading number and k₁ < ... < k_p. Then {v_{k1},..., v_{kp}} is a basis of the vector space F = ⟨S⟩.

Theorem

- If S = {v₁,..., v_n} is a set of vectors and generates the vector space V, then S contains a basis of the vector space V.
- If S = {v₁,..., v_n} is a set of linearly independent vectors in the vector space V, then there is a basis T of V which contains the set S.

Example

Let W be the sub-space of \mathbb{R}^5 generated by the set of following vectors:

$$v_1 = (1, 0, 2, -1, 2), v_2 = (2, 0, 4, -2, 4), v_3 = (1, 2, -1, 2, 0), v_4 = (1, 4, -4, 5, -2).$$

• Find a basis of the sub-space W in $\{v_1, v_2, v_3, v_4\}$.

2 Find a basis of \mathbb{R}^5 and contains $\{v_1, v_3\}$.

Solution

2 If
$$e_1 = (1, 0, 0, 0, 0)$$
, $e_2 = (0, 1, 0, 0, 0)$, $e_3 = (0, 0, 1, 0, 0)$.
Then $\{v_1, v_3, e_1, e_2, e_3\}$ is basis of \mathbb{R}^5 and contains $\{v_1, v_3\}$.

Example

Let
$$W = \{(x, y, z, t) \in \mathbb{R}^4; 2x + y + z = 0, x - y + z = 0\}$$

- **1** Prove that W is sub-space of \mathbb{R}^4
- 2 Find basis of the sub-space W.

Solution

(

$$u = (x, y, z, t) \in W \iff AX = 0, \text{ where}$$
$$A = \begin{pmatrix} 2 & 1 & 1 & 0 \\ 1 & -1 & 1 & 0 \end{pmatrix}, X = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}.$$

Since the set of solutions of an homogeneous linear system is a vector sub-space, then W is vector sub-space of \mathbb{R}^4 .

$$AX = 0 \iff \begin{cases} 2x + y + z = 0 \\ x - y + z = 0 \end{cases} \iff \begin{cases} x = -2y \\ z = 3y \end{cases}$$
$$\iff X = y \begin{pmatrix} -2 \\ 1 \\ 3 \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

Then $\{(-2, 1, 3, 0), (0, 0, 0, 1)\}$ is basis of the vector sub-space W.

Example

In the vector space $V = \mathbb{R}^3$, give a set S of vectors in V such that S generates the vector space V and not linearly independent. Solution

We can take $S = \{(1,0,0)\}$ and $T = \{(1,0,0), (0,1,0), (0,0,1), (1,1,1)\}.$

Coordinate System and Change of Basis

Definition

If $S = \{v_1, \dots, v_n\}$ is a basis of the vector space V and if $v \in V$ such that

$$v = x_1 v_1 + \ldots x_n v_n$$

then $(x_1, \ldots x_n)$ are called the system of coordinates of the vector v with respect to the basis S. We denote

$$[v]_{\mathcal{S}} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

and called the vector of coordinates of the vector v with respect to the basis S.

Theorem

If $B = \{v_1, \ldots, v_n\}$ and $C = \{u_1, \ldots, u_n\}$ are two basis of the vector space V. We define the matrix $_{C}P_B$ of type n such that its columns are $[v_1]_C, \ldots, [v_n]_C$. This matrix $_{C}P_B$ has an inverse and

$$[v]_C = {}_C P_B[v]_B$$

for all $v \in V$. The matrix $_{C}P_{B}$ is called the change of basis matrix from the basis B to the basis C.

Exercise

Let $B = \{v_1 = (0, 1, 1), v_2 = (1, 0, -2), v_3 = (1, 1, 0)\}$ be a basis of the vector space \mathbb{R}^3 and let $C = \{u_1 = (1, 0, 0), u_2 = (0, 1, 0), u_3 = (0, 0, 1)\}$ be the standard basis of the vector space \mathbb{R}^3 .

• Find the following matrix $_{C}P_{B}$ and $_{B}P_{C}$.

2 Find
$$[v]_B$$
 if $[v]_C = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$.

Exercise

•
$$_{C}P_{B} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & -2 & 0 \end{pmatrix} _{B}P_{C} = \begin{pmatrix} -2 & 2 & -1 \\ -1 & 1 & -1 \\ 2 & -1 & 1 \end{pmatrix}.$$

• $[v]_{B} = _{B}P_{C}[v]_{C} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}.$

Example

Prove that in \mathbb{R}^3 , the vectors u = (1,0,1), v = (-1,-1,2) and w = (-2,1,-2) form a basis and find the coordinate system of the vector X = (x, y, z) in this basis.

Solution

The matrix which columns the vectors u = (1, 0, 1), v = (-1, -1, 2)and w = (-2, 1, -2) is $A = \begin{pmatrix} 1 & -1 & -2 \\ 0 & -1 & 1 \\ 1 & 2 & -2 \end{pmatrix}$. Since |A| = -3, then u = (1, 0, 1), v = (-1, -1, 2) and w = (-2, 1, -2) is a basis of the vector space \mathbb{R}^3 . If X = au + bv + cw then $\begin{pmatrix} a \\ b \\ c \end{pmatrix} = A^{-1}X = \begin{pmatrix} 2y + z \\ \frac{-x+2}{3} \\ \frac{-x+3y+z}{3} \end{pmatrix}$.

Example

Prove that the system of vectors $S = \{(1, 1, 1), (-1, 1, 0), (1, 0, -1)\}$ is a basis of the vector space \mathbb{R}^3 .

Find the coordinates of the following vectors (1,0,0), (1,0,1) and (0,0,1) in this basis.

Solution:

 $\begin{vmatrix} 1 & -1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & -1 \end{vmatrix} = -3 \neq 0.$ Then *S* is a basis of the vector space \mathbb{R}^3 . $(1,0,0) = \frac{1}{3}(1,1,1) - \frac{1}{3}(-1,1,0) + \frac{1}{3}(1,0,-1).$ Then coordinates in the basis *S* is $(\frac{1}{3}, -\frac{1}{3}, \frac{1}{3}).$

Solution

$$\begin{array}{l} (0,0,1)=\frac{1}{3}(1,1,1)-\frac{1}{3}(-1,1,0)-\frac{2}{3}(1,0,-1).\\ \text{Then coordinates in the basis S is $(\frac{1}{3},-\frac{1}{3},-\frac{2}{3})$.\\ (1,0,1)=(1,0,0)+(0,0,1).\\ \text{Then coordinates in the basis S is $(\frac{2}{3},-\frac{2}{3},-\frac{1}{3})$. \end{array}$$

Definition

Let A be a matrix of type (m, n).

The vector sub-space of \mathbb{R}^n spanned by the rows of the matrix A is called the row vector space of the matrix A and denoted by: row(A).

The vector sub-space of \mathbb{R}^m spanned by the columns of the matrix A is called the column vector space of the matrix A and denoted by: $\operatorname{col}(A)$.

Theorem

Let A be a matrix of type (m, n). If B is any matrix which is a result of some row operations on the matrix A, then row(A) = row(B).

Theorem

Let A be a matrix of type (m, n) and if B any row echelon form of the matrix A. Then the set of non zero rows of the matrix B are linearly independent.

Definition

```
Let A be a matrix of type (m, n).
The dimension of the vector space row(A) is called the rank of the A.
rank(A) = dim(row(A)).
```

Remark

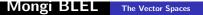
Let A be a matrix of type (m, n).

The rank of the matrix A is the numbers of leading numbers in any row echelon form of the matrix A.

Theorem

Let A be a matrix of type (m, n), then

$$\operatorname{rank}(A) = \operatorname{dim}(\operatorname{row}(A)) = \operatorname{dim}(\operatorname{col}(A)).$$



Corollary

Let A be a matrix of type (m, n), then

 $\operatorname{rank}(A) = \operatorname{rank}(A^T).$

Corollary

If A is a matrix of type (m, n) and P is any invertible matrix of type m and Q an invertible matrix of type n, then

 $\operatorname{rank}(A) = \operatorname{rank}(PAQ).$

Proof

There E_1, \ldots, E_p elementary matrix of order m such that $P = E_1 \ldots E_p$.

We know that if E is a elementary matrix which corresponds to an elementary row operation R, then EA is the result of the elementary row operation R on the matrix A. Then

 $\operatorname{rank}(A) = \operatorname{rank}(PA).$

 $\begin{aligned} \mathsf{Also} \operatorname{rank}(\mathsf{P} \mathsf{A} \mathsf{Q}) &= \operatorname{rank}(\mathsf{P} \mathsf{A} \mathsf{Q})^{\mathsf{T}} = \operatorname{rank}(\mathsf{Q}^{\mathsf{T}} \mathsf{A}^{\mathsf{T}} \mathsf{P}^{\mathsf{T}}) = \operatorname{rank}(\mathsf{A}^{\mathsf{T}} \mathsf{P}^{\mathsf{T}}) = \operatorname{rank}(\mathsf{A} \mathsf{A}) = \operatorname{rank}(\mathsf{A}). \end{aligned}$

Theorem

If A is a matrix of type (m, n). We have the equivalence of the following statements:

- The homogeneous system AX = 0 has 0 as unique solution.
- **2** The columns of the matrix A are linearly independent .

• The matrix $A^T A$ has an inverse.

Theorem

Let A be a matrix of type (m, n). We have the equivalence of the following statements

- The system AX = B is consistent for all $B \in \mathbb{R}^m$.
- **2** The columns of the matrix A generates the vector space \mathbb{R}^m .

• The matrix AA^T has an inverse.

Definition

Let A be a matrix of type (m, n). The vector sub-space

 $\{X \in \mathbb{R}^n; AX = 0\}$

is called the nullspace of the matrix A and denoted by: N(A). Its dimension is denoted by nullity(A). Also the vector sub-space

 $\{AX; X \in \mathbb{R}^n\}$

is called the image of the matrix A and denoted by: Im(A).

Theorem

Let A be a matrix of type (m, n). Then Im(A) = col(A).

Rank-Nullity Theorem

For any matrix A of type (m, n),

 $\operatorname{nullity}(A) + \operatorname{rank}(A) = n.$

Example

Let the matrix
$$A = \begin{pmatrix} 1 & 2 & -1 & -1 \\ 0 & -1 & 2 & 3 \\ 2 & 3 & 0 & 1 \\ 1 & 1 & 1 & 2 \end{pmatrix}$$

- Find a basis of the vector space N(A).
- **2** Find a basis of the vector space Col(A).
- **③** Find the rank of the matrix *A*.

Solution

The reduced row form the matrix A is
$$\begin{pmatrix} 1 & 0 & 3 & 5 \\ 0 & 1 & -2 & -3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

(-3, 2, 1, 0), (-5, 3, 0, 1) is basis of the vector space N(A) ...

- **2** (0,1,2,1), (-1,2,3,1) is a basis of the vector space Col(A).
- **③** The rank of the matrix A is 2.

Example

Let
$$e_1 = (0, 1, -2, 1)$$
, $e_2 = (1, 0, 2, -1)$, $e_3 = (3, 2, 2, -1)$, $e_4 = (0, 0, 1, 0)$ and $e_5 = (0, 0, 0, 1)$ vectors in \mathbb{R}^4 .
Is the following statements are true?

• Vect{
$$e_1, e_2, e_3$$
} = Vect{ $(1, 1, 0, 0), (-1, 1, -4, 2)$ }.

2 (1,1,0,0) ∈ Vect{
$$e_1, e_2$$
} ∩ Vect{ e_2, e_3, e_4 }.

3 Vect
$$\{e_1, e_2\}$$
 + Vect $\{e_2, e_3, e_4\} = \mathbb{R}^4$.

Solution

Let the matrix A which rows are the vectors e₁, e₂, e₃. The vector space Vect{e₁, e₂, e₃} is the row vector space of the matrix A. The reduced row form of the matrix A is

A₁ =
(1 0 2 -1)
(0 1 -2 1)
(0 0 0 0)

Then dimVect{e₁, e₂, e₃} = 2. We have Vect{e₁, e₂, e₃} = Vect{(1, 1, 0, 0), (-1, 1, -4, 2)} if and only if the rank of the following matrix B is 2

$$B = \begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & -2 & 1 \\ -1 & 1 & -4 & 2 \\ 1 & 1 & 0 & 0 \end{pmatrix}.$$

The reduced row form of the matrix *B* is $A_2 = \begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. Then

 $\operatorname{Vect}\{e_1, e_2, e_3\} = \operatorname{Vect}\{(1, 1, 0, 0), (-1, 1, -4, 2)\}.$

②
$$(1,1,0,0) = e_1 + e_2$$
, $2(1,1,0,0) = e_3 - e_2$.
Then $(1,1,0,0) \in \operatorname{Vect}\{e_1,e_2\} \cap \operatorname{Vect}\{e_2,e_3,e_4\}$.

$$\begin{array}{l} \bullet \ (1,1,0,0) \in \operatorname{Vect}\{e_1,e_2\} \cap \operatorname{Vect}\{e_2,e_3,e_4\} \text{ and} \\ e_2 \in \operatorname{Vect}\{e_1,e_2\} \cap \operatorname{Vect}\{e_2,e_3,e_4\}. \\ \text{Then } \dim\operatorname{Vect}\{e_1,e_2\} \cap \operatorname{Vect}\{e_2,e_3,e_4\} = 2 \text{ and} \end{array}$$

$$\operatorname{dim}\operatorname{Vect}\{e_1,e_2\}+\operatorname{Vect}\{e_2,e_3,e_4\}\leq 3$$

Then
$$\operatorname{Vect}\{e_1, e_2\} + \operatorname{Vect}\{e_2, e_3, e_4\} \neq \mathbb{R}^4$$
.

Example

Let in \mathbb{R}^3 the vectors, $u_1 = (1, 2, 1)$, $u_2 = (1, 3, 2)$, $u_3 = (1, 1, 0)$ and $u_4 = (3, 8, 5)$. Let $F = \text{Vect}(u_1, u_2)$ and $G = \text{Vect}(u_3, u_4)$. Prove that F = G.

Solution

As the vectors u_1, u_2 are linearly independent and also the vectors u_3, u_4 are linearly independent, then $\dim E = \dim F = 2$. F = G if and only if the rank of the following matrix is 2, $A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 3 & 2 \\ 1 & 1 & 0 \\ 3 & 8 & 5 \end{pmatrix}$.

The reduced row form of this matrix is

$$egin{pmatrix} 1 & 0 & -1 \ 0 & 1 & 1 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix}.$$

Then F = G.

Consider the matrix
$$A = \begin{pmatrix} 1 & -1 & 0 & -1 \\ -1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 3 \\ 1 & 0 & 1 & 2 \end{pmatrix}$$
.

- Find a basis of $\operatorname{Ker} T$ and a basis of $\operatorname{Im}(T)$.
- **2** Prove that $\mathbb{R}^4 = \operatorname{Im}(A) \oplus N(A)$.
- **③** Prove that A and A^2 have the same rank.

The reduced row echelon form of the augmented matrix of the system AX = 0 is **1** $N(A) = \{(-z - 2t, -z - 3t, z, t) : z, t \in \mathbb{R}\}$ and $\{(1, 1, -1, 0), (-2, -3, 0, 1)\}$ is a basis of N(A)2 {(1, -1, 0, 1), (-1, 1, 1, 0)} is a basis of Im(A) **3** As $\{(1, 1, -1, 0), (-2, -3, 0, 1), (1, -1, 0, 1), (-1, 1, 1, 0)\}$ is a basis of \mathbb{R}^4 , then $\mathbb{R}^4 = \text{Im}(A) \oplus \mathcal{N}(A)$. 4 $X \in N(A^2) \iff A^2 X = 0 \iff A X \in N(A)$

$$\iff A(X) \in N(A) \cap \operatorname{Im}(A) \iff AX = 0.$$

Then the matrices A and A^2 have the same rank.

