Parametric Equations and Polar Coordinates

Mongi Blel \& Tariq Al Fadhel
Department of Mathematics
King Saud University

February 18, 2023

The graph of a function $f: I \longrightarrow \mathbb{R}(I$ an interval) is an example of plane curve but it is not general enough to represent all types of plane curves, for example a circle or a vertical line segment are not the graph of functions because two distinct points of a graph have different abscissa. In this section we study the trajectory of a point in the plane whose coordinates $(x(t), y(t))$ depend on a parameter t, these are the parametric curves, or curves verifying a Cartesian equation.

Parametric Equations

Definition

If f and g are continuous functions on an interval I, the set of ordered pairs $(f(t), g(t)), t \in I$ is called a plane curve \mathcal{C}.
The equations $x=f(t)$ and $y=g(t)$ are called parametric equations of the curve \mathcal{C} and t is called the parameter.
We can also interpret the curve as the vectorial function $\gamma: I \longrightarrow \mathbb{R}^{2}$ defined by $\gamma(t)=(f(t), g(t)), t \in I$. In this case \mathcal{C} is called the support of the curve γ.

Definition

(1) The curve $\gamma: I \longrightarrow \mathbb{R}^{2}$ is called respectively continuous, differentiable, k-times differentiable, of class \mathcal{C}^{k}, if f and g are continuous, differentiable, k-times differentiable, of class \mathcal{C}^{k}.
(2) The Orientation of the curve of the parametric equations $\gamma=(f, g)$ is the direction of movement of the vector γ, for $t \in I$.

Remark

(1) If $\mathcal{C}=\{(x=f(t), y=g(t)) ; t \in I\}$ is a curve and the function $f: I \longrightarrow J$ is bijective, then $t=f^{-1}(x)$ and the curve is represented by the equation $y=g(t)=g \circ f^{-1}(x)$ and the curve is the graph of the function $y=g \circ f^{-1}(x)$, for $x \in J$.
(2) If $\mathcal{C}=\{(x=f(t), y=g(t)) ; t \in I\}$ is a curve an the function $g: I \longrightarrow J$ is bijective, then $t=g^{-1}(y)$ and the curve is represented by the equation $x=f(t)=f \circ g^{-1}(x)$ and the curve is the graph of the function $x=f \circ g^{-1}(y)$, for $y \in J$.

Examples

(1) The graph of a function $y=f(x)$ is a parametric curve of equation

$$
\gamma(t)=(x(t), y(t))=(t, f(t))
$$

(2) A line of equation $y=a x+b$ is the geometric curve of the mapping
$\gamma(t)=(t, a t+b), t \in \mathbb{R}$, therefore it is parameterizable as in 1).

The parametrization $(x(t), y(t))=(a, t), t \in \mathbb{R}$ is a parametrization of the vertical line $x=a$.
(3) The circle in \mathbb{R}^{2} of center (a, b) and of radius $r>0$ is the curve defined by $\left\{(x, y) \in \mathbb{R}^{2} ;(x-a)^{2}+(y-b)^{2}=r^{2}\right\}$ and it is parameterized by $\gamma:[0,2 \pi] \longrightarrow \mathbb{R}^{2}$, where $\gamma(t)=(a+r \cos (t), b+r \sin (t))$.

Remark

There are infinitely many ways to parametrize a curve.
(1) $(x(t), y(t))=(t, f(t))$ is a parametrization of the graph of the function $y=f(x)$. But $(x(t), y(t))=(t-a, f(t-a))$ is also a parametrization of this curve.
(2) $(a+r \cos (t), b+r \sin (t), t \in[0,2 \pi]$ is also a parametrization of the circle of center (a, b) and radius r.

Examples

(1) $x(t)=t+1, y(t)=2 t+3, t \in[-1,2]$. Then $y=2 x+1$, $x \in[0,3]$. The parametric equation represents a straight line.
(2) $x(t)=t-1, y(t)=t^{2}, t \in[-1,3]$. Then $y=(x+1)^{2}$, $x \in[-2,1]$. The parametric equation represents a parabola opens upwards with vertex $(-1,0)$.
(3) $x(t)=2+2 \cos t, y(t)=-1+2 \sin (t), t \in[0,2 \pi]$. Then $(x-2)^{2}+(y+1)^{2}=4$. The parametric equation represents a circle with center $(2,-1)$ and radius 2 . It is a closed curve and its direction is counter-clockwise.
(4) $x(t)=1+3 \cos t, y(t)=-1+2 \sin (t), t \in[0,2 \pi]$. Then $\frac{(x-1)^{2}}{9}+\frac{(y+1)^{2}}{4}=1$. The parametric equation represents an ellipse with center $(1,-1)$, the endpoints of the major axis are $(4,-1),(-2,-1)$ (its length is 6) and the endpoints of the minor axis are $(1,-3),(1,1)$ (its length is 4$)$. It is a closed curve and its direction is counter-clockwise.

Tangent to Parametric Curve

Definition

Let $\gamma=(f, g): I \longrightarrow \mathbb{R}^{2}$ be a parametric curve and let $a \in I(I$ an open interval). We assume that $\gamma(t) \neq \gamma(a)$ for t close to a. We say that this curve has tangent at the point $M_{0}=(f(a), g(a))$ if the direction of the vector $M_{0} M_{t}=\gamma(t)-\gamma(a),\left(M_{t}=\gamma(t)\right)$ has a limit when t tends to a. This means that for $t \in I$ close to a $(t \neq a)$, there exists a vector $V(t)$ collinear to the vector $M_{0} M_{t}$ such that $\lim _{t \rightarrow a} V(t)=V \neq 0$. The tangent at $M_{0}=\gamma(a)$ to the curve is the line passing through M_{0} and parallel to the vector V.

Example

If $\gamma(t)=\left(t^{2}, t^{3}\right)$ for $t \in \mathbb{R}$. The tangent to the curve $t \longmapsto \gamma(t)$ at $(0,0)=\gamma(0)$ is the real axis. Indeed, $\gamma(t)-\gamma(0)=t^{2}(1, t)$ which is parallel to the vector $V(t)=(1, t)$ and has the limit $(1,0)$ when t tends to 0 .

Theorem

(1) Let $\gamma: I \longrightarrow \mathbb{R}^{2}$ be a plane curve. If γ is differentiable at a and $\gamma^{\prime}(a) \neq 0$, the curve has a tangent at $M_{0}=\gamma(a)$ parallel to the vector $\gamma^{\prime}(a)$.
(2) In general if γ is k-times differentiable at a and $\gamma^{\prime}(a)=\gamma^{\prime \prime}(a)=\ldots=\gamma^{(k-1)}(a)=0$ and $\gamma^{(k)}(a) \neq 0$, then the curve has a tangent at $M_{0}=\gamma(a)$ parallel to the vector $\gamma^{(k)}(a)$.

Remark

(1) The slope of the tangent line to a parametric curve if it exists is

$$
m=\lim _{t \rightarrow t_{0}} \frac{y^{\prime}(t)}{x^{\prime}(t)}
$$

(2) The tangent line to the parametric curve is horizontal if the slope is equal to zero. In particular if $\frac{d y}{d t}=0$ and $\frac{d x}{d t} \neq 0$.
(3) The tangent line to the parametric curve is vertical if the slope is equal to ∞. In particular if $\frac{d x}{d t}=0$ and $\frac{d y}{d t} \neq 0$.

Definition

Let $\gamma=(f(t), g(t))$ be a parametric curve defined on the interval $I=[a, b]$.
(1) If γ is injective, the parametric curve is called simple.
(2) If $\gamma(a)=\gamma(b)$, the parametric curve is called closed.

Examples

(1) $x(t)=1+3 \cos t, y(t)=-1+3 \sin (t), t \in[0,2 \pi]$. Then $(x-1)^{2}+(y+1)^{2}=9$. Since $x^{\prime}(t)=-3 \sin (t)$ and $y^{\prime}(t)=3 \cos (t)$, the tangent to the curve is parallel to the x-axis at the point $(1,2)$ for $t=\frac{\pi}{2}$ and at the point $(1,-4)$ for $t=\frac{3 \pi}{2}$.
The tangent to the curve is parallel to the y-axis at the point $(4,-1)$ for $t=0$ and at the point $(-2,-1)$ for $t=\pi$.
(2) $x(t)=3+3 \cos t, y(t)=2+2 \sin (t), t \in[0,2 \pi]$. Then $\frac{(x-3)^{2}}{9}+\frac{(y-2)^{2}}{4}=1$. Since $x^{\prime}(t)=-3 \sin (t)$ and
$y^{\prime}(t)=2 \cos (t)$, the tangent to the curve is parallel to the x-axis at the point $(3,5)$ for $t=\frac{\pi}{2}$ and at the point $(3,0)$ for $t=\frac{3 \pi}{2}$.
The tangent to the curve is parallel to the y-axis at the point $(6,2)$ for $t=0$ and at the point $(0,2)$ for $t=\pi$.
(3) The slope of the tangent line to the curve

$$
\left(x(t)=t^{3}+1, y(t)=t^{4}-1\right) \text { at } t=1 \text { is } m=\frac{y^{\prime}(1)}{x^{\prime}(1)}=\frac{4}{3} .
$$

(9) Let $x(t)=t^{3}-3 t, y(t)=t^{2}-t-1, t \in \mathbb{R}$.

The slope of the curve at $t=-1$ is ∞. The tangent line to the curve at $(2,1)$ is parallel to the y-axis. The slope of the curve at $(0,-1)$ for $t=0$ is $\frac{1}{3}$. The equation of the tangent line to the curve at $(0,-1)$ is

$$
y=\frac{1}{3} x-1
$$

$$
\left(t^{3}-3 t, t^{2}-t-1\right)
$$

(6) Let $x(t)=2+2 \cos t, y(t)=-1+\sin (t), t \in[0,2 \pi]$. The slope of the curve is
$m=\frac{\cos (t)}{-2 \sin (t)}$. The points of the curve at which the tangent line is vertical are $(4,-1)$ and $(0,-1)$. The points of the curve at which the tangent line is horizontal are $(2,0)$ and $(2,-2)$.

Example

$(x(t), y(t))=(\sin (2 t), \cos (3 t))$, for $t \in$ \mathbb{R}. The curve is periodic of period 2π. $x(-t)=-x(t), y(-t)=-y(t)$, thus we study the curve on the interval $\left[0, \frac{\pi}{2}\right]$ and we take a symmetry with respect to the origin.
$x(\pi-t)=x(-t)=-x(t)$,
$y(\pi-t)=y(t)$, thus we study the curve on $\left[0, \frac{\pi}{2}\right]$ and we take a symmetry with respect to the axis (oy) and a symmetry with respect to the origin. $M_{0}=(0,0)$, $f^{\prime}(0)=(2,3)$,
$f^{\prime \prime}(0)=(0,0)$ and
$f^{(3)}(0)=(-8,-27) .(0,0)$ is an inflec-

$$
(x(t), y(t))=(\sin (2 t), \cos (3 t))
$$

tion point.

Arc Length of Parametric Curve

Definition

Let $\gamma:[a, b] \longrightarrow \mathbb{R}^{2}$ be a smooth curve. The arc length of the curve γ is defined by:

$$
L(\gamma)=\int_{a}^{b}\left\|\gamma^{\prime}(t)\right\| d t=\int_{a}^{b} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t
$$

Remark

The expression of $L(\gamma)$ is invariant by change of parametrization of class \mathcal{C}^{1} of the curve. Indeed if $\varphi:[\alpha, \beta] \longrightarrow[a, b]$ is a strictly increasing function of class \mathcal{C}^{1}. Set $\psi(s)=\gamma(\varphi(s))$, $\psi^{\prime}(s)=\gamma^{\prime}(\varphi(s)) \cdot \varphi^{\prime}(s),\left\|\psi^{\prime}(s)\right\|=\left\|\gamma^{\prime}(\varphi(s))\right\| \varphi^{\prime}(s) .\left(\varphi^{\prime}(s) \geq 0\right)$. Thus from the change of variables formula $(\varphi(\alpha)=a, \varphi(\beta)=b)$ we have

$$
\int_{\alpha}^{\beta}\left\|\psi^{\prime}(s)\right\| d s=\int_{a}^{b}\left\|\gamma^{\prime}(t)\right\| d t
$$

The same result if φ is strictly decreasing.

Examples

(1) If the curve is defined in Cartesian coordinates
$\gamma:[a, b] \longrightarrow \mathbb{R}^{2}$, with $\gamma(t)=(t, y(t)), t \in[a, b]$ and y of class \mathcal{C}^{1}.

$$
L(\gamma)=\int_{a}^{b} \sqrt{1+\left(y^{\prime}(t)\right)^{2}} d t
$$

For example, if $y=\tan (t), t \in\left[0, \frac{\pi}{4}\right]$, then $L(\gamma)=\ln (1+\sqrt{2})$.
(2) If $\gamma(t)=(\cos (t), \sin (t)), t \in[0,4 \pi] . L(\gamma)=4 \pi$.

Example

Consider the parametric curve $x(t)=\frac{1}{3} t^{3}+1, y(t)=\frac{1}{2} t^{2}+2$, $t \in[0,2]$. The arc length of this curve is

$$
\begin{aligned}
L & =\int_{0}^{2} \sqrt{\left(t^{2}\right)^{2}+(t)^{2}} d t=\frac{1}{2} \int_{0}^{2}\left(t^{2}+1\right)^{\frac{1}{2}}(2 t) d t \\
& =\frac{1}{2}\left[\frac{2}{3}\left(t^{2}+1\right)^{\frac{3}{2}}\right]_{0}^{2}=\frac{1}{3}(5 \sqrt{5}-1) .
\end{aligned}
$$

Surface Area Generated by Revolving a Parametric Curves

Theorem

If $\gamma(t)=(x(t), y(t)), t \in[a, b]$ is a smooth parametric curve:
(1) The surface area generated by revolving the curve γ around the x-axis is

$$
S=2 \pi \int_{a}^{b}|y(t)| \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t
$$

(2) The surface area generated by revolving γ around the y-axis is

$$
S=2 \pi \int_{a}^{b}|x(t)| \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t
$$

Examples

The surface area generated by revolving the following parametric curves:
(1) $x(t)=t, y(t)=\frac{t^{3}}{3}+\frac{1}{4 t}, t \in[1,2]$, around the x-axis.

$$
\begin{aligned}
S & =2 \pi \int_{1}^{2}\left(\frac{t^{3}}{3}+\frac{1}{4 t}\right) \sqrt{1+\left(t^{2}-\frac{1}{4 t^{2}}\right)^{2}} d t \\
& =2 \pi \int_{1}^{2}\left(\frac{t^{3}}{3}+\frac{1}{4 t}\right) \sqrt{t^{4}+\frac{1}{2}+\frac{1}{16 t^{4}}} d t \\
& =2 \pi \int_{1}^{2}\left(\frac{t^{3}}{3}+\frac{1}{4 t}\right)\left(t^{2}+\frac{1}{4 t^{2}}\right) d t \\
& =2 \pi \int_{1}^{2}\left(\frac{t^{5}}{3}+\frac{t}{3}+\frac{1}{16 t^{3}}\right) d t=\frac{509 \pi}{64}
\end{aligned}
$$

(2) $x(t)=4 \sqrt{t}, y(t)=\frac{1}{2} t^{2}+\frac{1}{t}, t \in[1,4]$, around the y-axis.

$$
\begin{aligned}
S & =2 \pi \int_{1}^{4} 4 \sqrt{t} \sqrt{\left(\frac{2}{\sqrt{t}}\right)^{2}+\left(t-\frac{1}{t^{2}}\right)^{2}} d t \\
& =2 \pi \int_{1}^{4} 4 \sqrt{t} \sqrt{\left(t+\frac{1}{t^{2}}\right)^{2}} d t \\
& =2 \pi \int_{1}^{4} 4 \sqrt{t}\left(t+\frac{1}{t^{2}}\right) d t=\frac{288 \pi}{5}
\end{aligned}
$$

Example

Find the surface area generated by revolving the following parametric curves:
(1) $x(t)=3 t, y=4 t, t \in[0,2]$, around the x-axis.
(2) $x(t)=t, y=2 t, t \in[0,4]$, around the y-axis.

In the rectangular coordinates system the ordered pair (a, b) represents a point, where " a " is the x-coordinate and " b " is the y-coordinate.
The polar coordinates system can be used also to represents points in the plane. The pole in the polar coordinates system is the origin in the rectangular coordinates system, and the polar axis is the directed half-line (the non-negative part of the x-axis). If P is any point in the plane different from the origin, then its polar coordinates consists of two components r and θ, where r is the algebraic distance between P and the pole O, and θ is the measure of an angle determined by the polar axis and $O P$.
Note: The polar coordinates of a point is not unique, if $P=(r, \theta)$ then other representations are:
(1) $P=(r, \theta+2 n \pi)$, where $n \in \mathbb{Z}$.
(2) $P=(-r, \theta+\pi+2 n \pi)$, where $n \in \mathbb{Z}$.

Remark

The polar coordinates (r, θ) and the rectangular coordinates (x, y) of a point P are related as follows:

$$
x=r \cos \theta, \quad y=r \sin (\theta)
$$

Examples

(1) If $(r, \theta)=\left(2, \frac{\pi}{2}\right)$, then its other polar coordinates are

$$
\left(2, \frac{\pi}{2}+2 k \pi\right) \text { or }\left(-2, \frac{3 \pi}{2}+2 n \pi\right), k, n \in \mathbb{Z} \text {. }
$$

(2) If $(r, \theta)=\left(-3, \frac{5 \pi}{4}\right)$ then its other polar coordinates are

$$
\left(-3, \frac{5 \pi}{4}+2 k \pi\right) \text { and }\left(3, \frac{\pi}{4}+2 n \pi\right), k, n \in \mathbb{Z}
$$

(3) The rectangular coordinates (x, y) of the point $(r, \theta)=(-5, \pi)$ are $(x, y)=(5,0)$.
(9) The polar coordinates of the point $(2 \sqrt{3},-2)$ are $\left(4,-\frac{\pi}{6}+2 k \pi\right), k \in \mathbb{Z}$ or $\left(-4, \frac{5 \pi}{6}+2 k \pi\right), k \in \mathbb{Z}$
(5) The rectangular coordinates of the point $(r, \theta)=\left(2, \frac{\pi}{2}\right)$ are $(x, y)=(0,2)$.
(0) The polar coordinates of the point $(\sqrt{2}, \sqrt{2})$ are

$$
\left(2, \frac{\pi}{4}+2 k \pi\right), k \in \mathbb{Z} \text { or }\left(-2, \frac{5 \pi}{4}+2 k \pi\right), k \in \mathbb{Z} .
$$

Definition

A parametric curve $t \longmapsto \gamma(t),(t \in I)$ is called a polar curve if for any $t \in I, \gamma(t)$ is determined by a polar coordinates $(r(t), \theta(t))$. In which follows, we study the polar curves with equation $r=f(\theta)$.

A curve in polar coordinates can be studied in Cartesian coordinates by the change of coordinates $x(t)=r(t) \cos (\theta(t))$, $y(t)=r(t) \sin (\theta(t))$.

Examples

(1) The straight lines:

- Lines passing through the pole:

Any straight line passing through the pole has the form $\theta=\theta_{0}$, where θ_{0} is the angle between the straight line and the polar axis.
$\theta=\theta_{0} \Rightarrow \tan (\theta)=\tan \left(\theta_{0}\right) \Rightarrow \frac{y}{x}=\tan \left(\theta_{0}\right) \Rightarrow y=\tan \left(\theta_{0}\right) x$.
The straight line $\theta=\theta_{0}$ is passing through the pole with a slope equals to $\tan \left(\theta_{0}\right)$.
For example the equation $\theta=\frac{\pi}{4}$ is the equation of a straight
line passing through the pole with a slope equals to
$\tan \left(\frac{\pi}{4}\right)=1$. Therefore its equation in $x y$-form is $y=x$.

- Lines perpendicular to the polar axis:

Any straight line perpendicular to the polar axis has the form $r=a \sec (\theta)$, where $a \in \mathbb{R}^{*}$ and $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
$r=a \sec (\theta) \Rightarrow r=\frac{a}{\cos (\theta)} \Rightarrow r \cos (\theta)=a \Rightarrow x=a$.
The straight line $r=a \sec (\theta)$ is perpendicular to the polar axis at the point $(r, \theta)=(a, 0)$
For example the equation $r=3 \sec (\theta)$ is a straight line perpendicular to the polar axis and passing through the point $(r, \theta)=(3,0)$. Therefore its equation in $x y$-form is $x=3$. The equation $r=-2 \csc (\theta)$ is a straight line parallel to the polar axis and passing through the point $(r, \theta)=\left(-2, \frac{\pi}{2}\right)$. Therefore its equation in the $x y$-form is $y=-2$.

- Lines parallel to the polar axis:

Any straight line parallel to the polar axis has the form $r=a \csc (\theta)$, where $a \in \mathbb{R}^{*}$ and $\theta \in(0, \pi)$.
$r=a \csc (\theta) \Rightarrow r=\frac{a}{\sin (\theta)} \Rightarrow r \sin (\theta)=a \Rightarrow y=a$.
The straight line $r=a \sec (\theta)$ is parallel to the polar axis and passing through the point $(r, \theta)=\left(a, \frac{\pi}{2}\right)$.
(2) Circles:

- Circles of the form $r=a$, where $a \in \mathbb{R}^{*}$.

The equation $r=a$ represents a circle with center $(0,0)$ and radius equals |a|.

- Circles of the form $r=a \sin (\theta)$, where $a \in \mathbb{R}^{*}$ and $0 \leq \theta \leq \pi$.
$x=a \sin (\theta) \cos (\theta)=\frac{a}{2} \sin (2 \theta), y=a \sin ^{2}(\theta)=\frac{a}{2}-\frac{a}{2} \cos (2 \theta)$. Then the equation $r=a \sin (\theta)$, where $a \in \mathbb{R}^{*}$ and $0 \leq \theta \leq \pi$ represents a circle with center $\left(0, \frac{a}{2}\right)$ and radius equals to $\frac{|a|}{2}$.
$r=2 \sin (\theta)$ represents a circle with center $(0,1)$ and radius equals to 1
- Circles of the form $r=a \cos (\theta)$, where $a \in \mathbb{R}^{*}$ and
$-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$.
$x=a \cos ^{2}(\theta)=\frac{a}{2}+\frac{a}{2} \cos (2 \theta), y=a \sin (\theta) \cos (\theta)=\frac{a}{2} \sin (2 \theta)$. Then the
equation $r=a \cos (\theta)$, where $a \in \mathbb{R}^{*}$ and
$-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$ represents a circle with center $\left(\frac{a}{2}, 0\right)$ and radius equals to
$\frac{|a|}{2}$.
$r=2 \cos (\theta)$ represents a circle with center $(1,0)$ and radius equals to 1
(3) The Limaçon curves:

The general form of a Limaçon curve is $r(\theta)=a+b \sin (\theta)$ or $r(\theta)=a+b \cos (\theta)$, where $a, b \in \mathbb{R}^{*}$ and $0 \leq \theta \leq 2 \pi$

- Cardioid (Heart-shaped). It has the form $r(\theta)=a \pm a \sin (\theta)$ or $r(\theta)=a \pm a \cos (\theta)$, where $a \in \mathbb{R}^{*}$ and $0 \leq \theta \leq 2 \pi$

$$
r=2+2 \cos (\theta)
$$

$r=2+2 \sin (\theta)$

- Limaçon with inner loop:

It has the form $r(\theta)=a+b \sin (\theta)$ or $r(\theta)=a+b \cos (\theta)$, where $a, b \in \mathbb{R}^{*},|a|<|b|$ and $0 \leq \theta \leq 2 \pi$
Note: Note that $|a|<|b|$ in this case.

$r=1+2 \cos (\theta)$

$$
r=1+2 \sin (\theta)
$$

$$
r=1-2 \cos (\theta)
$$

$r=1-2 \sin (\theta)$

- Dimpled Limaçon:

It has the form $r(\theta)=a+b \sin (\theta)$ or $r(\theta)=a+b \cos (\theta)$, where $a, b \in \mathbb{R}^{*},|a|>|b|$ and $0 \leq \theta \leq 2 \pi$

$r=2+\cos (\theta)$

$r=2+\cos (\theta)$

$r=2-\cos (\theta)$

$r=2-\sin (\theta)$
(4) Rose curves:

It has the form $r(\theta)=a \cos (n \theta)$ or $r(\theta)=a \sin (n \theta)$, where $a \in \mathbb{R}^{*}, n \in \mathbb{N}$ and $n \geq 2$

- \mathbf{n} is even: In this case the number of loops (or leaves) is $2 n$.

For example: $r(\theta)=2 \cos (2 \theta)$ or $r(\theta)=2 \sin (2 \theta), 0 \leq \theta \leq 2 \pi$. The number of loops (or leaves) equals 4.

- \mathbf{n} is odd: In this case the number of loops (or leaves) is n. For example: $r(\theta)=2 \cos (3 \theta)$ or $r(\theta)=2 \sin (3 \theta), \quad 0 \leq \theta \leq \pi$ The number of loops (or leaves) equals 3.

Tests of Symmetry

(1) If $r(\theta)=r(-\theta)$, the curve is symmetric with respect to the polar axis (the x-axis).
For example, the circle $r=4 \cos (\theta)$ and the cardioid $r=2+2 \cos (\theta)$ are both symmetric with respect to the polar axis.
(2) If $r(\theta)=-r(-\theta)$ or $r(\theta)=r(\pi-\theta)$, the curve is symmetric with respect to the y - axis.
For example the circle $r=4 \sin (\theta)$ and the cardioid $r=2+2 \sin (\theta)$ are both symmetric with respect to the $y-$ axis.
(3) If $r(\theta)=r(\pi+\theta)$, the curve is symmetric with respect to the pole.
For example the rose curve $r=\sin (2 \theta)$ is symmetric with respect to the pole.

Slope of the Tangent Line to a Polar Curve

Definition

If $r=r(\theta)$ is a smooth polar curve, then the slope of the tangent line to the curve $r(\theta)$ at the point $r(\alpha)$ (if it exists) is

$$
m=\lim _{\theta \rightarrow \alpha} \frac{d y}{d x}=\lim _{\theta \rightarrow \alpha} \frac{r(\theta) \cos (\theta)+r^{\prime}(\theta) \sin (\theta)}{-r(\theta) \sin (\theta)+r^{\prime}(\theta) \cos (\theta)}
$$

Notes:

(1) If $\frac{d y}{d \theta}=0$ and $\frac{d x}{d \theta} \neq 0$, the tangent line to $r=r(\theta)$ is horizontal,
(2) If $\frac{d x}{d \theta}=0$ and $\frac{d y}{d \theta} \neq 0$, the tangent line to $r=r(\theta)$ is vertical.

Example

(1) Let $r(\theta)=2 \sin (\theta), \theta \in[0, \pi]$.
$x(\theta)=\sin (2 \theta)$ and $\frac{d x}{d \theta}=2 \cos (2 \theta), y(\theta)=2 \sin ^{2}(\theta)$ and $\frac{d y}{d \theta}=2 \sin (2 \theta)$.
The tangent line to the curve is vertical if and only if $\frac{d x}{d \theta}=0$ and $\frac{d y}{d \theta} \neq 0$. Thus $\theta=\frac{\pi}{4}$ or $\theta=\frac{3 \pi}{4}$.
The points of the curve $r(\theta)=2 \sin (\theta), 0 \leq \theta \leq \pi$ at which the tangent line to r is vertical are $\left(\sqrt{2}, \frac{\pi}{4}\right)$ and $\left(\sqrt{2}, \frac{3 \pi}{4}\right)$.
The tangent line to $r=r(\theta)$ is horizontal if $\frac{d y}{d \theta}=0$ and $\frac{d x}{d \theta} \neq 0$. Thus $\theta=0, \theta=\frac{\pi}{2}$ or $\theta=\pi$.

The points of the curve $r(\theta)=2 \sin (\theta), 0 \leq \theta \leq \pi$ at which the tangent line to r is horizontal are $(0,0)$, and $(0,2)$.
(2) Consider the polar curve $r(\theta)=1+\cos (\theta), \theta \in[0,2 \pi]$.
$x(\theta)=(1+\cos \theta) \cos (\theta), \frac{d x}{d \theta}=-\sin (\theta)(1+2 \cos (\theta))$,
$y(\theta)=(1+\cos (\theta)) \sin (\theta)$ and
$\frac{d y}{d \theta}=\cos (\theta)+\cos (2 \theta)=(2 \cos (\theta)-1)(\cos (\theta)+1)$.
$\frac{d x}{d \theta}=0 \Longleftrightarrow \theta=0, \pi, 2 \pi, \frac{2 \pi}{3}, \frac{4 \pi}{3}$.
$\frac{d y}{d \theta}=0 \Longleftrightarrow \theta=\pi, \frac{\pi}{3}, \frac{5 \pi}{3}$.

The slope at the point $r(\pi)$ is

$$
\begin{aligned}
m & =\lim _{\theta \rightarrow \pi} \frac{y^{\prime}(\theta)}{x^{\prime}(\theta)}=\lim _{\theta \rightarrow \pi} \frac{(2 \cos (\theta)-1)(\cos (\theta)+1)}{-\sin (\theta)(1+2 \cos (\theta))} \\
& =\lim _{\theta \rightarrow \pi} \frac{(2 \cos (\theta)-1)(\cos (\theta)+1)}{-\sin (\theta)(1+2 \cos (\theta))}=0 .
\end{aligned}
$$

The tangent line to the curve $r=r(\theta)$ is horizontal at the points $(0,0),\left(\frac{3}{4}, \frac{\sqrt{3}}{4}\right)$ and $\left(\frac{3}{4},-\frac{\sqrt{3}}{4}\right)$
The tangent line to the curve $r=r(\theta)$ is vertical at the points $(2,0),\left(-\frac{1}{4}, \frac{\sqrt{3}}{4}\right)$ and $\left(-\frac{1}{4},-\frac{\sqrt{3}}{4}\right)$

Area Between Polar Curves

Theorem

Let $r:[\alpha, \beta] \rightarrow \mathbb{R}^{+}$be a continuous function, where $0 \leq \alpha<\beta \leq 2 \pi$ (generally $0<\beta-\alpha \leq 2 \pi$). Then the area of the region bounded by the curve $r(\theta)$, where $\theta \in[\alpha, \beta]$, is equal to

$$
A=\int_{\alpha}^{\beta} \frac{1}{2} r^{2}(\theta) d \theta
$$

Examples

(1) Let $r=\sec (\theta)$. The area of the region bounded by the curve and the straight lines $\theta=0$ and $\theta=\frac{\pi}{4}$ is

$$
A=\frac{1}{2} \int_{0}^{\frac{\pi}{4}}(\sec (\theta))^{2} d \theta=\frac{1}{2}[\tan (\theta)]_{0}^{\frac{\pi}{4}}=\frac{1}{2}
$$

(The area is the area of the triangle of base 1 and height 1).
Note that $r=\sec (\theta)$ is a straight line perpendicular to the polar axis at the point $(r, \theta)=(1,0), \theta=0$ is the polar axis and $\theta=\frac{\pi}{4}$ is a straight line passing the pole with a slope equals 1 (in fact it is the line $y=x$).

(2) Let $r=2 \cos (\theta),-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$: The polar curve $r=2 \cos (\theta)$ is a circle with center $(1,0)$ and radius 1. The area inside the curve is:

$$
\begin{aligned}
A & =\frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 4 \cos ^{2}(\theta) d \theta \\
& =2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2}[1+\cos (2 \theta)] d \theta \\
& =\left[\theta+\frac{\sin (2 \theta)}{2}\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}=\pi
\end{aligned}
$$

(3) Let $r=4 \cos (\theta)$ and $r=2 \cos (\theta)$.

Note that $r=4 \cos (\theta)$ is a circle with center $(2,0)$ and radius 2 and the curve $r=2 \cos (\theta)$ is a the circle with center $(1,0)$ and radius 1 . The area inside the curve $r=4 \cos (\theta)$ and outside the curve $r=2 \cos (\theta)$ is:

$$
\begin{aligned}
A & =\frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(4 \cos (\theta))^{2} d \theta-\frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(2 \cos (\theta))^{2} d \theta \\
& =\frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 12 \cos ^{2}(\theta) d \theta=6 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2}[1+\cos (2 \theta)] d \theta \\
& =3\left[\theta+\frac{\sin (2 \theta)}{2}\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}=3 \pi
\end{aligned}
$$

Arc Length of Polar Curve

Definition

The arc length of a smooth polar curve $r=r(\theta)$ from θ_{1} to θ_{2} is

$$
L=\int_{\theta_{1}}^{\theta_{2}} \sqrt{(r(\theta))^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta .
$$

Examples

(1) $r=1+\cos (\theta), 0 \leq \theta \leq 2 \pi$.

The curve is symmetric with respect to the polar axis then the arc length of the curve is

$$
\begin{aligned}
L & =2 \int_{0}^{\pi} \sqrt{(1+\cos (\theta))^{2}+(-\sin (\theta))^{2}} d \theta \\
& =2 \int_{0}^{\pi} \sqrt{\left(1+2 \cos (\theta)+\cos ^{2}(\theta)\right)+\sin ^{2}(\theta)} d \theta \\
& =2 \int_{0}^{\pi} \sqrt{2+2 \cos (\theta)} d \theta=2 \int_{0}^{\pi} \sqrt{4 \cos ^{2}\left(\frac{\theta}{2}\right)} d \theta \\
& =4 \int_{0}^{\pi} \cos \left(\frac{\theta}{2}\right) d \theta=8
\end{aligned}
$$

(2) $r=2 \cos (\theta),-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$.

The arc length of the curve is

$$
\begin{aligned}
L & =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{(2 \cos (\theta))^{2}+(-2 \sin (\theta))^{2}} d \theta \\
& =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{4 \cos ^{2}(\theta)+4 \sin ^{2}(\theta)} d \theta=2 \pi
\end{aligned}
$$

(3) $r=e^{-\theta}, 0 \leq \theta \leq \pi$.

The arc length of the curve is

$$
\begin{aligned}
L & =\int_{0}^{\pi} \sqrt{\left(e^{-\theta}\right)^{2}+\left(-e^{-\theta}\right)^{2}} d \theta \\
& =\int_{0}^{\pi} \sqrt{e^{-2 \theta}+e^{-2 \theta}} d \theta=\sqrt{2} \int_{0}^{\pi} e^{-\theta} d \theta=\sqrt{2}\left(1-e^{-\pi}\right)
\end{aligned}
$$

Surface Area Generated by Revolving Polar Curve

Definition

The surface area generated by revolving the smooth polar curve $r=r(\theta), \theta_{1} \leq \theta \leq \theta_{2}$ around the polar axis is

$$
S=2 \pi \int_{\theta_{1}}^{\theta_{2}}|r(\theta) \sin (\theta)| \sqrt{(r(\theta))^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta
$$

The surface area generated by revolving the smooth polar curve $r=r(\theta), \theta_{1} \leq \theta \leq \theta_{2}$ around the line $\theta=\frac{\pi}{2}$ is

$$
A=2 \pi \int_{\theta_{1}}^{\theta_{2}}|r(\theta) \cos (\theta)| \sqrt{(r(\theta))^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta
$$

Examples

(1) Let $r=e^{\frac{\theta}{2}}, 0 \leq \theta \leq \pi$. The surface area generated by revolving the smooth polar curve around the polar axis is

$$
\begin{aligned}
S & =2 \pi \int_{0}^{\pi}\left|e^{\frac{\theta}{2}} \sin (\theta)\right| \sqrt{\left(e^{\frac{\theta}{2}}\right)^{2}+\left(\frac{1}{2} e^{\frac{\theta}{2}}\right)^{2}} d \theta \\
& =\pi \sqrt{5} \int_{0}^{\pi} e^{\theta} \sin (\theta) d \theta=\sqrt{5} \pi\left[\frac{1}{2} e^{\theta}(\sin (\theta)-\cos (\theta))\right]_{0}^{\pi} \\
& =\frac{\sqrt{5} \pi}{2}\left(e^{\pi}+1\right)
\end{aligned}
$$

(We use integration by parts).
(2) Let $r=2+2 \cos (\theta), 0 \leq \theta \leq \frac{\pi}{2}$, The surface area generated by revolving the smooth polar curve around the polar axis is

$$
\begin{aligned}
S & =2 \pi \int_{0}^{\frac{\pi}{2}}|(2+2 \cos (\theta)) \sin (\theta)| \sqrt{(2+2 \cos (\theta))^{2}+(-2 \sin (\theta))^{2}} d \theta \\
& =4 \pi \int_{0}^{\frac{\pi}{2}}(2+2 \cos (\theta)) \sin (\theta) \sqrt{2+2 \cos (\theta)} d \theta \\
& =4 \pi \int_{0}^{\frac{\pi}{2}}(2+2 \cos (\theta))^{\frac{3}{2}} \sin (\theta) d \theta \\
& =-2 \pi\left[\frac{2}{5}(2+2 \cos (\theta))^{\frac{5}{2}}\right]_{0}^{\frac{\pi}{2}}=\frac{16 \pi}{5}(8-\sqrt{2})
\end{aligned}
$$

(3) Let $r=\cos (\theta),-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$, The surface area generated by revolving the smooth polar curve around the line $\theta=\frac{\pi}{2}$ is

$$
\begin{aligned}
S & =2 \pi \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}|\cos (\theta) \cos (\theta)| \sqrt{(\cos (\theta))^{2}+(-\sin (\theta))^{2}} d \theta \\
& =2 \pi \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos ^{2}(\theta) d \theta=\pi \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(1+\cos (2 \theta)) d \theta \\
& =\pi\left[\theta+\frac{\sin (2 \theta)}{2}\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}=\pi^{2}
\end{aligned}
$$

- Let $r=2 \sin (\theta), 0 \leq \theta \leq \frac{\pi}{2}$, The surface area generated by revolving the smooth polar curve around the line $\theta=\frac{\pi}{2}$ is

$$
\begin{aligned}
S & =2 \pi \int_{0}^{\frac{\pi}{2}}|2 \sin (\theta) \cos (\theta)| \sqrt{(2 \sin (\theta))^{2}+(2 \cos (\theta))^{2}} d \theta \\
& =4 \pi \int_{0}^{\frac{\pi}{2}} \sin (2 \theta) d \theta=4 \pi .
\end{aligned}
$$

(The surface area of a sphere of radius 1.)

