Inner Product Spaces and Orthogonality

Mongi BLEL

King Saud University
January 2, 2024

Table of contents

(1) Inner Product
(2) The orthogonality
(3) The Orthonormal Basis

Inner Product

Definition

Let V be a vector space on \mathbb{R}.
We say that a function $\langle\rangle:, V \times V \longrightarrow \mathbb{R}$ is an inner product on V if it satisfies the following:
For all $u, v, w \in V, \alpha \in \mathbb{R}$.
(1) $\langle u, v\rangle=\langle v, u\rangle$
(2) $\langle u+v, w\rangle=\langle u, w\rangle+\langle v, w\rangle$
(3) $\langle\alpha u, v\rangle=\alpha\langle u, v\rangle$
(9) $\langle u, u\rangle \geq 0$
(6) $\langle u, u\rangle=0 \Longleftrightarrow u=0$

Examples

(1) The Euclidean inner product on \mathbb{R}^{n} defined by:

$$
\langle u, v\rangle=\sum_{j=1}^{n} x_{j} y_{j}=x_{1} y_{1}+\ldots+x_{n} y_{n}
$$

where $u, v \in \mathbb{R}^{n}, u=\left(x_{1}, \ldots, x_{n}\right)$ and $v=\left(y_{1}, \ldots, y_{n}\right)$.
(2) If $E=\mathcal{C}([0,1])$ the vector space of continuous functions on $[0,1]$. For all $f, g \in E$, we define the inner product of f and g by:

$$
\langle f, g\rangle=\int_{0}^{1} f(t) g(t) t!
$$

Remarks

If $(E,\langle\rangle$,$) is an inner product space and u, v, w, x \in E$, $a, b, c, d \in \mathbb{R}$, we have:

$$
\langle u+v, w+x\rangle=\langle u, w\rangle+\langle u, x\rangle+\langle v, w\rangle+\langle v, x\rangle .
$$

$$
\langle a u+b v, c w+d x\rangle=a c\langle u, w\rangle+a d\langle u, x\rangle
$$

$$
+b c\langle v, w\rangle+b d\langle v, x\rangle .
$$

Example

Let $u=(x, y)$ and $v=(a, b)$, we define

$$
\langle u, v\rangle=2 a x+b y-b x-a y
$$

\langle,$\rangle is an inner product on \mathbb{R}^{2}$.
It is enough to prove that $\langle u, u\rangle \geq 0$ and $\langle u, u\rangle=0 \Longleftrightarrow u=0$.

$$
\begin{aligned}
& \quad\langle u, u\rangle=2 x^{2}+y^{2}-2 x y=(x-y)^{2}+x^{2} \geq 0 \\
& \text { and }\langle u, u\rangle=0 \Longleftrightarrow u=0 .
\end{aligned}
$$

Example

Let $u=(x, y, z)$ and $v=(a, b, c)$, we define

$$
\langle u, v\rangle=2 a x+b y+3 c z-b x-a y+c y+b z
$$

\langle,$\rangle is an inner product on \mathbb{R}^{3}$.
It is enough to prove that $\langle u, u\rangle \geq 0$ and $\langle u, u\rangle=0 \Longleftrightarrow u=0$.

$$
\begin{aligned}
\langle u, u\rangle & =(y+z-x)^{2}-(z-x)^{2}+2 x^{2}+3 z^{2} \\
& =(y+z-x)^{2}+(x+z)^{2}+z^{2} \geq 0 \\
\langle u, u\rangle & =0 \Longleftrightarrow z=x=y=0 \Longleftrightarrow u=0
\end{aligned}
$$

Example

Let $u=(x, y, z)$ and $v=(a, b, c)$, we define

$$
\langle u, v\rangle=2 a x+b y+c z-b x-a y+c y+b z
$$

\langle,$\rangle is not an inner product on \mathbb{R}^{3}$.

$$
\begin{aligned}
\langle u, u\rangle & =(y+z-x)^{2}-(z-x)^{2}+2 x^{2}+z^{2} \\
& =(y+z-x)^{2}+x^{2}+2 x z \\
& =(y+z-x)^{2}+(x+z)^{2}-z^{2} .
\end{aligned}
$$

Example

If $A=\left(a_{j, k}\right) \in \mathscr{M}_{n}(\mathbb{R})$, we define the trace of the matrix A by:

$$
\operatorname{tr}(A)=\sum_{j=1}^{n} a_{j, j}
$$

and

$$
\langle A, B\rangle=\operatorname{tr}\left(A B^{T}\right)
$$

for all $A, B \in \mathscr{M}_{n}(\mathbb{R})$.
$\langle A, B\rangle$ is an inner product on the vector space $\mathscr{M}_{n}(\mathbb{R})$.

Exercise

If $u=\left(x_{1}, x_{2}, x_{3}\right), v=\left(y_{1}, y_{2}, y_{3}\right)$, we define the following functions: $f, g, h, k: \mathbb{R}^{2} \times \mathbb{R}^{3} \longrightarrow \mathbb{R}$.
(1) $f(u, v)=x_{1} y_{1}+x_{2} y_{2}+2 x_{3} y_{3}+x_{2} y_{1}+2 x_{1} y_{2}+x_{2} y_{3}+y_{2} x_{3}$.
(2) $g(u, v)=x_{1} y_{2}+x_{2} y_{1}+x_{2} y_{3}+x_{3} y_{2}+3 x_{1} y_{3}+3 x_{3} y_{1}$.
(3) $h(u, v)=$ $x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}+x_{2} y_{1}+x_{1} y_{2}+x_{2} y_{3}+y_{2} x_{3}+x_{3} y_{1}+x_{1} y_{3}$.
(4) $k(u, v)=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}-x_{2} y_{3}-x_{3} y_{2}+x_{1} y_{3}+y_{1} x_{3}$. Select from which the functions f, g, h, k is an inner product on \mathbb{R}^{3}.

Solution

(1) $f(u, v)-f(v, u)=x_{1} y_{2}-x_{2} y_{1}$. Then f is not an inner product on \mathbb{R}^{3}.
(2) $g(u, u)=2 x_{1} x_{2}+2 x_{2} x_{3}+6 x_{1} x_{3}=2\left(x_{1}+x_{3}\right)\left(x_{2}+3 x_{3}\right)-6 x_{3}^{2}=$ $\left(x_{1}+x_{2}+4 x_{3}\right)^{2}-\left(x_{1}-x_{2}-2 x_{3}\right)^{2}-6 x_{3}^{2}$. .
Then g is not an inner product on \mathbb{R}^{3}.
3

$$
\begin{aligned}
h(u, u) & =x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+2 x_{1} x_{2}+2 x_{2} x_{3}+2 x_{1} x_{3} \\
& =\left(x_{1}+x_{2}+x_{3}\right)^{2}
\end{aligned}
$$

Then h is not an inner product on \mathbb{R}^{3} because

$$
h(u, u)=0 \nRightarrow u=0 .
$$

$$
\begin{aligned}
k(u, u) & =x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-2 x_{2} x_{3}+2 x_{1} x_{3} \\
& =\left(x_{1}+x_{3}\right)^{2}+x_{2}^{2}-2 x_{2} x_{3} \\
& =\left(x_{1}+x_{3}\right)^{2}+\left(x_{2}-x_{3}\right)^{2}-x_{3}^{2}
\end{aligned}
$$

Then k is not an inner product on \mathbb{R}^{3} because

$$
k(u, u)=0 \nRightarrow u=0 .
$$

Example

Find the values of a, b such that

$$
\left\langle\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right\rangle=x_{1} y_{1}+x_{2} y_{2}+a x_{1} y_{2}+b x_{2} y_{1}
$$

is an inner product on \mathbb{R}^{2}.

Solution

$$
\begin{aligned}
\left\langle\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right\rangle=\left\langle\left(y_{1}, y_{2}\right),\right. & \left.\left(x_{1}, x_{2}\right)\right\rangle \text { if } a=b . \\
\left\langle\left(x_{1}, x_{2}\right),\left(x_{1}, x_{2}\right)\right\rangle & =x_{1}^{2}+x_{2}^{2}+2 a x_{1} x_{2} \\
& =\left(x_{1}+a x_{2}\right)^{2}+x_{2}^{2}\left(1-a^{2}\right) .
\end{aligned}
$$

Then \langle,$\rangle is an inner product on \mathbb{R}^{2}$ if and only if $|a|<1$.

Definition

Let $(E,\langle\rangle$,$) be an inner product space.$
(1) If $u \in E$, we define the norm of the vector u by:

$$
\|u\|=\sqrt{\langle u, u\rangle} .
$$

(2) If $u, v \in E$, we define distance between u and v by:

$$
d(u, v)=\|u-v\| .
$$

(3) We define the angle $0 \leq \theta \leq \pi$ between the vectors $u, v \in E$ by:

$$
\cos \theta=\frac{\langle u, v\rangle}{\|u\| \cdot\|v\|}
$$

Let the inner product space $\left.\mathscr{M}_{2}(\mathbb{R}),\langle\rangle,\right)$ defined by:

$$
\langle A, B\rangle=\operatorname{tr}\left(A B^{T}\right)
$$

Find $\cos \theta$ If θ is the angle between the matrices
$A=\left(\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right)$ and $B=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$.
$A B^{T}=\left(\begin{array}{ll}1 & 0 \\ 7 & 5\end{array}\right),\|A\|^{2}=15,\|B\|^{2}=7$.
Then

$$
\cos \theta=\frac{2 \sqrt{3}}{\sqrt{35}}
$$

Theorem (Cauchy-Schwarz Inequality)

If $(E,\langle\rangle$,$) is an inner product space and u, v \in E$, then

$$
\begin{equation*}
|\langle u, v\rangle| \leq\|u\|\|v\| . \tag{1}
\end{equation*}
$$

We have the equality in (1) if the vectors u, v are linearly dependent.

Proof

Let $Q(t)$ be the polynomial

$$
Q(t)=\|u+t v\|^{2}=\|u\|^{2}+2 t\langle u, v\rangle+t^{2}\|v\|^{2} .
$$

Since $Q(t) \geq 0$ for all $t \in \mathbb{R}$, then the discriminant of $Q(t)$ is non positive. Then

$$
\langle u, v\rangle^{2} \leq\|u\|^{2}\|v\|^{2} .
$$

If $|\langle u, v\rangle|=\|u\|\|v\|$, this mean that the discriminant of $Q(t)$ is zero. Then the equation $Q(t)=0$ has a solution. This means that the vectors u, v are linearly dependent.

Theorem

If $(E,\langle\rangle$,$) is an inner product space and u, v \in E$, then

$$
\|u+v\| \leq\|u\|+\|v\| .
$$

Proof

$$
\begin{aligned}
\|u+v\|^{2} & =\|u\|^{2}+\|v\|^{2}+2\langle u, v\rangle \\
& \leq\|u\|^{2}+\|v\|^{2}+2\|u\|\|v\|=(\|u\|+\|v\|)^{2}
\end{aligned}
$$

Definition

If $(E,\langle\rangle$,$) is an inner product space. We say that the vectors$ $u, v \in E$ are orthogonal and we denote $u \perp v$ if $\langle u, v\rangle=0$.

Theorem (Pythagor's Theorem)

If $u \perp v$ if and only if

$$
\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}
$$

Proof

$$
\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}+2\langle u, v\rangle=\|u\|^{2}+\|v\|^{2} .
$$

Definition

If $(E,\langle\rangle$,$) is an inner product space. We say that set$ $S=\left\{e_{1}, \ldots, e_{n}\right\}$ of non zeros vectors is orthogonal if

$$
\left\langle e_{j}, e_{k}\right\rangle=0, \quad \forall 1 \leq j \neq k \leq n .
$$

and we say that S is normal if

$$
\left\|e_{j}\right\|=1, \quad \forall 1 \leq j \leq n
$$

and we say that it is orthonormal if

$$
\left\langle e_{j}, e_{k}\right\rangle=\delta_{j, k}, \quad \forall 1 \leq j, k \leq n .
$$

$\left(\delta_{j, k}=0\right.$ If $j \neq k$ and $\left.\delta_{j, j}=1.\right)$

Theorem

Any set of non zero orthogonal vectors is linearly independent .

Theorem

If $(E,\langle\rangle$,$) is an inner product space and if S=\left\{e_{1}, \ldots, e_{n}\right\}$ is an orthonormal basis of E, then for all $u \in E$

$$
u=\left\langle u, e_{1}\right\rangle e_{1}+\ldots+\left\langle u, e_{n}\right\rangle e_{n} .
$$

Proof

If $u=\sum_{j=1}^{n} a_{j} e_{j}$, then $\left\langle u, e_{k}\right\rangle=\sum_{j=1}^{n} a_{j}\left\langle e_{j}, e_{k}\right\rangle=a_{k}$.

Theorem

(Gramm-Schmidt Algorithm) If $(E,\langle\rangle$,$) is an inner product space$ and $\left(v_{1}, \ldots, v_{n}\right)$ a set of linearly independent vectors in E, there is a unique orthonormal set $\left(e_{1}, \ldots, e_{n}\right)$ such that
(1) for all $k \in\{1, \ldots, n\}$,

$$
\operatorname{Vect}\left(e_{1}, \ldots, e_{k}\right)=\operatorname{Vect}\left(v_{1}, \ldots, v_{k}\right)
$$

(2) for all $k \in\{1, \ldots, n\}$,

$$
\left\langle e_{k}, v_{k}\right\rangle>0
$$

Proof

We construct in the first time an orthogonal set $\left(u_{1}, \ldots, u_{n}\right)$ such that:

$$
\left\{\begin{array}{ccc}
u_{1} & = & v_{1} \\
u_{2} & = & v_{2}-\frac{\left\langle u_{1}, v_{2}\right\rangle}{\left\|u_{1}\right\|^{2}} u_{1} \\
& \vdots & \\
u_{n} & = & v_{n}-\sum_{i=1}^{n-1} \frac{\left\langle u_{i}, v_{n}\right\rangle}{\left\|u_{i}\right\|^{2}} u_{i} .
\end{array}\right.
$$

We construct the set $\left(e_{1}, \ldots, e_{n}\right)$ from $\left(u_{1}, \ldots, u_{n}\right)$ as follows:

$$
e_{k}=\frac{u_{k}}{\left\|u_{k}\right\|}, \quad k \in\{1, \ldots, n\}
$$

Example

Let F be the vector sub-space of \mathbb{R}^{4} spanned by the vectors $S=\{u=(1,1,0,0), v=(1,0,-1,0), w=(0,0,1,1)\}$.
(1) Prove that S is a basis of the sub-space F.
(2) In use of Gramm-Schmidt Algorithm, find an orthonormal basis of F. (with respect to the Euclidean inner product).

Solution

(1) Let $A=\left(\begin{array}{ccc}1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 1\end{array}\right)$ with columns the vectors u, v, w.

The matrix $A=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ is a row reduced form of the matrix A. This proves that S is a basis of the sub-space F.
(2) $u_{1}=\frac{1}{\sqrt{2}}(1,1,0,0), u_{2}=\frac{1}{\sqrt{6}}(1,-1,-2,0)$,
$u_{3}=\frac{1}{\sqrt{12}}(1,-1,1,3)$.
$\left\{u_{1}, u_{2}, u_{3}\right\}$ is an orthonormal basis of the sub-space F.

Exercise

(1) Prove that $\langle(a, b),(x, y)\rangle=a x+a y+b x+2 b y$ is an inner product in \mathbb{R}^{2}.
(2) Use Gramm-Schmidt algorithm to construct an orthonormal basis of \mathbb{R}^{2} from the basis $\left\{u_{1}=(1,-1), u_{2}=(1,2)\right\}$.

Solution

(1) - $\langle(a, b)+(c, d),(x, y)\rangle=(a+c) x+(a+c) y+(b+d) x+$ $2(b+d) y=\langle(a, b),(x, y)\rangle+\langle(c, d),(x, y)\rangle$

- $\langle(a, b),(x, y)\rangle=a x+a y+b x+2 b y=\langle(x, y),(a, b)\rangle$
- $\langle\lambda(a, b),(x, y)\rangle=\lambda a x+\lambda a y+\lambda b x+2 \lambda b y=$

$$
\lambda\langle(a, b),(x, y)\rangle
$$

- $\langle(a, b),(a, b)\rangle=a^{2}+2 a b+2 b^{2}=(a+b)^{2}+b^{2} \geq 0$
- $\langle(a, b),(a, b)\rangle=0 \Longleftrightarrow a+b=0=b \Longleftrightarrow a=b=0$
(2) The vector u_{1} is unitary and the second vector is $v_{2}=(1,0)$. Then $\left\{v_{1}=(1,-1), v_{2}=(1,0)\right\}$ is an orthonormal basis.

Example

Let $S=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ is a basis of the space $\mathscr{M}_{2}(\mathbb{R})$ such that $u_{1}=\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right), u_{2}=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right), u_{3}=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right), u_{4}=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$
We use the Gramm-Schmidt algorithm to construct an orthonormal basis from the basis S.
$v_{1}=\frac{1}{\sqrt{3}}\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)$.
$\left\langle u_{2}, v_{1}\right\rangle=\frac{2}{\sqrt{3}}$,
$u_{2}-\left\langle u_{2}, v_{1}\right\rangle v_{1}=\frac{1}{3}\left(\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right)$.
$v_{2}=\frac{1}{\sqrt{15}}\left(\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right)$.

$$
\begin{aligned}
& \left\langle u_{3}, v_{1}\right\rangle=\sqrt{3},\left\langle u_{3}, v_{2}\right\rangle=\frac{3}{\sqrt{15}} \\
& u_{3}-\left\langle u_{3}, v_{1}\right\rangle v_{1}-\left\langle u_{3}, v_{2}\right\rangle v_{2}=\frac{1}{5}\left(\begin{array}{ll}
-1 & 3 \\
-3 & 4
\end{array}\right) . \\
& v_{3}=\frac{1}{\sqrt{35}}\left(\begin{array}{ll}
-1 & 3 \\
-3 & 4
\end{array}\right) . \\
& \left\langle u_{4}, v_{1}\right\rangle=0,\left\langle u_{4}, v_{2}\right\rangle=\frac{6}{\sqrt{15}},\left\langle u_{4}, v_{3}\right\rangle=\frac{4}{\sqrt{35}} \\
& u_{4}-\left\langle u_{4}, v_{1}\right\rangle v_{1}-\left\langle u_{4}, v_{2}\right\rangle v_{2}-\left\langle u_{4}, v_{3}\right\rangle v_{3}=\frac{1}{35}\left(\begin{array}{cc}
-10 & -39 \\
-29 & -29
\end{array}\right) . \\
& v_{4}=\frac{1}{\sqrt{7}}\left(\begin{array}{cc}
2 & 1 \\
-1 & -1
\end{array}\right) .
\end{aligned}
$$

Exercise

Let F be the vector sub-space of the Euclidean space \mathbb{R}^{4} spanned by the following vectors
$u_{1}=(1,2,0,2), u_{2}=(-1,1,1,1)$.
(1) Use Gramm-Schmidt algorithm to construct an orthonormal basis of the vector sub-space F
(2) Prove that the set $F^{\perp}=\left\{u \in \mathbb{R}^{4}:\langle u, v\rangle=0, \forall v \in F\right\}$ is a vector sub-space of \mathbb{R}^{4}.
(3) Find an orthonormal basis of the vector sub-space F^{\perp}.

Solution

(1) $v_{1}=\frac{1}{3} u_{1},\left\langle u_{2}, v_{1}\right\rangle=1$,
$u_{2}-\left\langle u_{2}, v_{1}\right\rangle v_{1}=(0,3,1,-1)-\frac{1}{3}(-1,1,1,1)=\frac{1}{3}(-4,1,3,1)$.
Then $v_{2}=\frac{1}{3 \sqrt{3}}(-4,1,3,1)$.
(v_{1}, v_{2}) is an orthonormal basis of the vector sub-space F.
(2) If $v_{1}, v_{2} \in F^{\perp}, \alpha, \beta \in \mathbb{R}$ and $u \in F$, then

$$
\left\langle\alpha v_{1}+\beta v_{2}, u\right\rangle=\alpha\left\langle v_{1}, u\right\rangle+\beta\left\langle v_{2}, u\right\rangle=0 .
$$

Then F^{\perp} is a vector sub-space of \mathbb{R}^{4}.
(3) Let $u=(x, y, z, t) \in \mathbb{R}^{4}$.

$$
u \in F^{\perp} \Longleftrightarrow\left\{\begin{array} { l }
{ \langle u , u _ { 1 } \rangle = 0 } \\
{ \langle u , u _ { 2 } \rangle = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{c}
x+2 y+2 t=0 \\
-x+y+z+t=0
\end{array}\right.\right.
$$

$$
\left\{\begin{array} { c }
{ x + 2 y + 2 t = 0 } \\
{ - x + y + z + t = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{c}
x=\frac{2}{3} z \\
y=-\frac{z}{3}-t
\end{array}\right.\right.
$$

Then $u \in F^{\perp} \Longleftrightarrow u=-\frac{z}{3}(-2,1,-3,0)+t(0,-1,0,1)$.
The vectors $e_{1}=(-2,1,-3,0), e_{2}=(0,-1,0,1)$ is an orthogonal basis of the vector sub-space F^{\perp}.
$w_{1}=\frac{1}{\sqrt{14}} e_{1},\left\langle w_{1}, e_{2}\right\rangle=-\frac{1}{\sqrt{14}}$,
$e_{2}-\left\langle e_{2}, w_{1}\right\rangle w_{1}=\frac{1}{14}(2,13,3,14)$.
Then $\left(\frac{1}{\sqrt{14}}(-2,1,-3,0), \frac{1}{3 \sqrt{42}}(2,13,3,14)\right)$ is an orthonormal basis of the vector sub-space F^{\perp}.

Consider the following inner product on \mathbb{R}^{3}

$$
\left\langle(x, y, z),\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\right\rangle=2 x x^{\prime}+4 y y^{\prime}+z z^{\prime}+2 x y^{\prime}+2 y x^{\prime} .
$$

(1) Use Gram-Schmidt process on the standard basis $C=\left\{u_{1}=(1,0,0), u_{2}=(0,1,0), u_{3}=(0,0,1)\right\}$ to get an orthogonal basis $B=\left\{v_{1}, v_{2}, v_{2}\right\}$ of \mathbb{R}^{3}.
(2) Let $u=(1,2,3)$ be a vector in \mathbb{R}^{3}. Compute $[u]_{B}$ the coordinates of u with respect to the basis B.
(1) The basis $\left\{\frac{1}{\sqrt{2}} u_{1}, \frac{1}{\sqrt{2}}\left(u_{2}-u_{1}\right), u_{3}\right\}$ is an orthonormal basis of \mathbb{R}^{3}
(2) Let $u=(1,2,3)$ be a vector in \mathbb{R}^{3}.

$$
[u]_{B}=\left(\begin{array}{l}
\left\langle u, v_{1}\right\rangle \\
\left\langle u, v_{2}\right\rangle \\
\left\langle u, v_{3}\right\rangle
\end{array}\right)=\left(\begin{array}{c}
\frac{6}{\sqrt{2}} \\
\frac{4}{\sqrt{2}} \\
3
\end{array}\right) .
$$

