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Uniform Circular Motion

= A force, F,, is directed
toward the center of the
circle

= This force is associated

with an acceleration, a, !
= Applying Newton’s

Second Law along the

radial direction gives

2
V

ZF:mac =m—
r
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i Uniform Circular Motion,

cont

—

= A force causing a
centripetal acceleration acts
toward the center of the /
circle /

= It causes a change in the i
direction of the velocity 1
vector \

= If the force vanishes, the
object would move in a
straight-line path tangent
to the circle camorcnacsc
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i Centripetal Force

= The force causing the centripetal
acceleration is sometimes called the
centripetal force

= This is not a new force, it is a new rol/e
for a force

= It is a force acting in the role of a force
that causes a circular motion
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i Conical Pendulum

= The object is in
equilibrium in the
vertical direction and
undergoes uniform
circular motion in
the horizontal
direction

v:\/LgsithanH

= Vis independent of
m
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i Motion in a Horizontal Circle

= The speed at which the object moves
depends on the mass of the object and
the tension in the cord

= The centripetal force is supplied by the
tension

Tr
V=, |—
m
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i Horizontal (Flat) Curve

= The force of static
friction supplies the
centripetal force

= The maximum speed at
which the car can
negotiate the curve is

v =1/ ugr “

= Note, this does not a
depend on the mass of LR
the car )

© 2004 Thomson/Brooks Cole
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‘L Banked Curve

= These are designed
with friction equaling
Zero

= There is a component
of the normal force that
supplies the centripetal
force

2

.
tan@ = —
rg @ 2004 Thomson/Brooks Cole
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i Loop-the-Loop

= This is an example
of a vertical circle

= At the bottom of the
loop (b), the upward
force experienced by
the object is greater
than its weight

V2
n,, =mg 1+E
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i Loop-the-Loop, Part 2

= At the top of the
circle (c), the force
exerted on the
object is less than
its weight

© 2004 Thomson/Brooks Cole
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Non-Uniform Circular Motion

= |he acceleration and e S
force have tangential Y \
components / %

= F,produces the | \
centripetal acceleration ! |

= F,produces the \
tangential acceleration

| 2F=2F,—+ ZF[- \

© 2004 Thomson/Brooks Cole
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Vertical Circle with Non-
i Uniform Speed

= The gravitational
force exerts a \,
tangential force on »
the object [‘

\\ T /
= Look at the ?
components of F, A

" The tenSion at any mg cos 9”//9 \\\\T"”Z’:’;é/
point can be found

/\;

2 mg
1% .
T — m (R + g COS Hj © 2004 Thomson/Brooks Cole (A)
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i Top and Bottom of Circle

= [he tension at the
bottom is a

maximum

= he tension at the
top is @ minimum

n If 7Eop = 0, then

Vtop = \@

10/26/23 Chapter 6
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i Motion in Accelerated Frames

s A fictitious force results from an

accelerated frame of reference
= A fictitious force appears to act on an
object in the same way as a real force, but

you cannot identify a second object for the
fictitious force
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“Centrifugal” Force

= From the frame of the

passenger (b), a force appears
to push her toward the door

= From the frame of the Earth,
the car applies a leftward
force on the passenger

= The outward force is often
called a centrifugalforce

= It is a fictitious force due to the
acceleration associated with the
car’'s change in direction

10/26/23 Chapter 6
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“Coriolis Force”

= This is an apparent
force caused by iriteiriiall Rty ooy
changing the radial . R
position of an object 2 AW <
in a rotating N Y A
coordinate system 93 \%@\
= The result of the .| Z -
. . & : ®
rotation is the £ -
curved path ofthe  «
ball
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i Fictitious Forces, examples

= Although fictitious forces are not real

forces, they can have real effects

= Examples:

U Objed

s in the car do slide

= You feel pushed to the outside of a
rotating platform

= The Coriolis force is responsible for the
rotation of weather systems and ocean
currents

10/26/23
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Fictitious Forces In Linear

i Systems

= The inertial observer (a)
sees

ZFX =T'sinf = ma
ZFy =T cosf—mg =0

= The noninertial observer
(b) sees

ZF'szsinQ—F =ma

fictitious

" . _
ZFy-TcosH mg =0
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Fictitious Forces in a Rotating

i System

= According to the inertial observer (a), the tension is the
centripetal force " my?

r

= The noninertial observer (b) sees

2
my
r _Fﬁctitious =T - = O
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i Motion with Resistive Forces

= Motion can be through a medium
= Either a liquid or a gas

= The medium exerts a resistive force, R, on an
object moving through the medium

= The magnitude of R depends on the medium

= The direction of R is opposite the direction of
motion of the object relative to the medium

= R nearly always increases with increasing
speed
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Motion with Resistive Forces,

i cont

= The magnitude of R can depend on the
speed in complex ways

= We will discuss only two

= R is proportional to v

« Good approximation for slow motions or small
objects

= R is proportional to v?
= Good approximation for large objects
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i R Proportional To v

= The resistive force can be expressed as
R=-b)v
= b depends on the property of the

medium, and on the shape and
dimensions of the object

= The negative sign indicates R is in the
opposite direction to v
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i R Proportional To v, Example

= Analyzing the
motion results in

dv R
mg —bv=ma=m—
dt |
v b l
dt s m
— -0

(a)
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R Proportional To v, Example,

i cont

= Initially, v= 0 and e O |
avidt= g

= As fincreases, R “RR
increases and a
decreases 0|}

= [he acceleration

approaches 0 when R R
— mg o |
= At this point, v =019 {
approaches the o
terminal speed of the .
object —
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i Terminal Speed

= To find the terminal speed, ,
leta=0

b

= Solving the differential
equation gives

v =%(l—eb’/’”) =v, (1—€_t/f)

s 7IS the time constant and
r=mlb
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i R Proportional To v?

= For objects moving at high speeds through
air, the resistive force is approximately equal

to the square of the speed

s R= Y2 DpAV
= Dis a dimensionless empirical quantity that called
the drag coefficient
= pis the density of air
= Ais the cross-sectional area of the object
= Vis the speed of the object
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i R Proportional To v4, example

= Analysis of an object
falling through air
accounting for air
resistance

ZF =mg —%Dpsz = ma

a =g—(Dz';Ajv2

10/26/23 Chapter 6
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R Proportional To v4, Terminal

i Speed

= The terminal speed R
will occur when the
acceleration goes to

Zero
= Solving the equation Vip
gives

2mg
v, = oA
A
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i Some Terminal Speeds

Table 6.1
Terminal Speed for Various Objects Falling Through Air

Object Mass (kg) Cross-Sectional Area (m?) vy (m/s)
Sky diver 745, 0.70 60
Baseball (radius 3.7 cm) 0.145 492 X 1073 43
Golf ball (radius 2.1 cm) 0.046 1.4 X 1072 1
Hailstone (radius 0.50 ¢m) 48 x 104 7.9 X 107° 14
Raindrop (radius 0.20 cm) 34 X 107° 1.3 X 107> 9.0

© 2004 Thomson/Brooks Cole
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i Process for Problem-Solving

= Analytical Method

= The process used so far

= Involves the identification of well-behaved
functional expressions generated from
algebraic manipulation or techniques of
calculus
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i Analytical Method

= Apply the method using this procedure:

= Sum all the forces acting on the particle to
find the net force, =F

= Use this net force to determine the
acceleration from the relationship a =XFAm

= Use this acceleration to determine the
velocity from the relationship adv/dt = a

= Use this velocity to determine the position
from the relationship ax/dt = v
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i Analytic Method, Example

= Applying the procedure:
= Ffp=ma,=-mg
= g,= -gand dv [ dt =-g
= V()= V,—
= Y=y + t V2 ge

mg

@© 2004 Thomson/Brooks Cole
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i Numerical Modeling

= In many cases, the analytic method is
not sufficient for solving “real” problems

= Numerical modeling can be used in
place of the analytic method for these
more complicated situations

= The Euler method is one of the simplest
numerical modeling techniques
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i Euler Method

= In the Euler Method, derivatives are
approximated as ratios of finite
differences

= Afis assumed to be very small, such
that the change in acceleration during
the time interval is also very small
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Equations for the Euler

i Method

a(t) N Av _ v(t+ At) —v(1)
At At
v(t+At) = v(t)+a(t)At

and

Wt ~ Ax N x(t+ At) — x(¢)
At At

x(t+At) = x(t) +v(1)At

10/26/23 Chapter 6
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i Euler Method Continued

= It is convenient to set up the numerical
solution to this kind of problem by
numbering the steps and entering the
calculations into a table

= Many small increments can be taken,
and accurate results can be obtained by
a computer
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i Euler Method Set Up

Table 6.3

The Euler Method for Solving Dynamics Problems
Step Time Position Velocity Acceleration
0 Lo X0 U ag = F(xq, vg, o) /m
1 ty = top + At X1 = xo9 + v At v = Y + agAt ay = F(xp, vy, 4)/m
2 to = 1) + At Xo = x1 + v At v = v + a At as = F(xo, vo, lo)/m
3 ts = to + At X3 = Xo + oAl vy = v + as At ag = F(xg, vs, t3) /m
n In Xn Up ay

© 2004 Thomson/Brooks Cole
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i Euler Method Final

= One advantage of the method is that the
dynamics are not obscured

= The relationships among acceleration, force,
velocity and position are clearly shown

= [ he time interval must be small

= The method is completely reliable for
infinitesimally small time increments

= For practical reasons a finite increment must be
chosen
= A time increment can be chosen based on the

initial conditions and used throughout the problem

= In certain cases, the time increment may need to be
10/26/23 changed within thengretdem 38



i Accuracy of the Euler Method

= [ he size of the time increment influences the
accuracy of the results

= It is difficult to determine the accuracy of the
result without knowing the analytical solution

= One method of determining the accuracy of
the numerical solution is to repeat the
solution with a smaller time increment and
compare the results

= If the results agree, the results are correct to the
precision of the number of significant figures of
agreement

10/26/23 Chapter 6 39



Euler Method, Numerical

i Example

Table 6.4
The Sphere Begins to Fall in Oil
Time Acceleration

Step (ms) Position (cm) Velocity (cm/s) (cm/s?)
0 0.0 0.0000 0.0 —980.0
1 0.1 0.0000 —0.10 —960.8
2 0.2 0.0000 —0.19 —942.0
3 0.3 0.0000 —0.29 —923.5
4 0.4 —0.000 1 —0.38 —-905.4
5 0.5 —0.0001 —0.47 —887.7
6 0.6 —0.0001 —0.56 —870.3
7 0.7 —0.0002 —(0.65 —8b53.2
8 0.8 —0.000 3 —0.73 —836.5
9 0.9 —0.000 3 —(0.82 —820.1

10 1.0 —0.000 4 —0.90 —804.0

10/26/23 Chapter 6
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Euler Method, Numerical
i Example cont.

Table 6.5
The Sphere Reaches 0.900 vy
Time Acceleration
Step (ms) Position (cm) Velocity (cm/s) (cm/s?%)
110 11.0 —0.0324 —4.43 —i [ |
111 11.1 —0.0328 —4.44 —108.9
12 11.2 —0.0333 —4.46 —106.8
13 11.3 —0.0337 —4.47 —104.7
114 11.4 —0.0342 —4.48 = 16026
115 11.5 —0.0346 —4.49 —100.6
116 11.6 —0.0351 —4.50 —98.6
117 1L —0.0355 —4.51 —96.7
118 11.8 —0.0360 —4.52 —94.8
119 11.9 —0.036 4 —4.53 —92.9
120 12.0 —0.0369 —4.54 —91.1
10/26/23 Chapter 6
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