Dr. Bassam Hammo

Canonical Cover

- A *canonical cover* for *F* is a set of dependencies F_c such that
 - F logically implies all dependencies in F_{c_1} and
 - $\bullet\,\,F_{\rm c}$ logically implies all dependencies in F, and
 - \bullet No functional dependency in $\mathrm{F_{c}}$ contains an extraneous attribute, and
 - Each left side of functional dependency in F_c is unique
- Intuitively, a canonical cover of F is a "minimal" set of functional dependencies equivalent to F, having no redundant dependencies or redundant parts of dependencies

Extraneous Attributes

- Consider *F*, and a functional dependency, $A \rightarrow B$.
- "Extraneous": Are there any attributes in *A* or *B* that can be safely removed ?
 - Without changing the constraints implied by *F*

Testing if an Attribute is Extraneous

- Consider a set *F* of functional dependencies and the functional dependency $\alpha \rightarrow \beta$ in *F*.
- To test if attribute $A \in \alpha$ is extraneous in α
 - 1. compute $({\alpha} A)^+$ using the dependencies in *F*
 - 2. check that $({\alpha} A)^+$ contains A; if it does, A is extraneous
- To test if attribute $A \in \beta$ is extraneous in β
 - 1. compute α^+ using only the dependencies in $F' = (F - \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta - A)\},$
 - 2. check that α^+ contains *A*; if it does, *A* is extraneous

 $R = \{A, B, C, D, E, F, G, H\}$

 $F = \{AC \rightarrow G, D \rightarrow EG, BC \rightarrow D, CG \rightarrow BD, ACD \rightarrow B, CE \rightarrow AG\}$

Find the canonical cover of F.

- 1. Simplify all RHS (Decomposition)
- 2. For all FDs on LHS find a redundant (extraneous) attribute
- 3. Eliminate all redundant FDs
- 4. Apply Union if needed
- 5.The result is Fc

 $R = \{A, B, C, D, E, F, G, H\}$

 $F = \{AC \rightarrow G, D \rightarrow EG, BC \rightarrow D, CG \rightarrow BD, ACD \rightarrow B, CE \rightarrow AG\}$

Find the canonical cover of F:

- $AC \not \rightarrow G$
- $D \rightarrow E$
- $D \rightarrow G$
- $BC \rightarrow D$
- $CG \rightarrow B$
- $CG \rightarrow D$
- ACD \rightarrow B
- $\mathsf{CE} \not \to \mathsf{A}$
- $CE \not \to G$

 $R = \{A, B, C, D, E, F, G, H\}$ $F = \{AC \rightarrow G, D \rightarrow EG, BC \rightarrow D, CG \rightarrow BD, ACD \rightarrow B, CE \rightarrow AG\}$ Find the canonical cover of F: $AC \rightarrow G$ $D \rightarrow E \sqrt{}$ $D \rightarrow G \sqrt{}$ $BC \rightarrow D$ $CG \rightarrow B$ Find the extraneous attribute in this FD: $CG \rightarrow D$ D? ACD \rightarrow B (AC)+ \rightarrow ACG**B**, so we got B; D is extraneous and can be safely eliminated. $CE \rightarrow A$ $CE \rightarrow G$ Rewrite the new FD as AC \rightarrow B

 $R = \{A,B,C,D,E,F,G,H\}$ F = {AC→G, D→EG, BC→D, CG→BD, ACD→B, CE→AG}

Find the canonical cover of F:

$AC \rightarrow C$	
$D \rightarrow E $	Find the extraneous attribute in this FD:
$D \rightarrow G $	A? C?
BC \rightarrow D	A+ \rightarrow A, so can't get G; C is not extraneous C+ \rightarrow C, so can't get G; A is not extraneous
$CG \rightarrow B$	
$CG \rightarrow D$	Keep this FD as is
$AC \rightarrow B$	
$CE \rightarrow A$	

 $CE \rightarrow G$

 $R = \{A,B,C,D,E,F,G,H\}$ F = {AC→G, D→EG, BC→D, CG→BD, ACD→B, CE→AG} Find the canonical cover of F:

 $AC \rightarrow G$ $D \rightarrow E \sqrt{}$ $D \rightarrow G \sqrt{}$ $BC \rightarrow D$ $CG \rightarrow B$ $CG \rightarrow D$ $AC \rightarrow B$ $CE \rightarrow A$ $CE \rightarrow G$

Find the extraneous attribute in this FD:

B? C? B+ \rightarrow B, so can't get D; C is not extraneous C+ \rightarrow C, so can't get D; B is not extraneous

Keep this FD as is

 $R = \{A,B,C,D,E,F,G,H\}$ F = {AC→G, D→EG, BC→D, CG→BD, ACD→B, CE→AG} Find the canonical cover of F:

 $AC \rightarrow G$ $D \rightarrow E \sqrt{}$ $D \rightarrow G \sqrt{}$ $BC \rightarrow D$ $CG \rightarrow B$ $CG \rightarrow D$ $AC \rightarrow B$ $CE \rightarrow A$ $CE \rightarrow G$

Find the extraneous attribute in this FD:

G? C? C+ \rightarrow C, so can't get B; G is not extraneous G+ \rightarrow G, so can't get B; C is not extraneous

Keep this FD as is

 $R = \{A,B,C,D,E,F,G,H\}$ F = {AC→G, D→EG, BC→D, CG→BD, ACD→B, CE→AG} Find the canonical cover of F:

 $AC \rightarrow G$ $D \rightarrow E \sqrt{}$ $D \rightarrow G \sqrt{}$ $BC \rightarrow D$ $CG \rightarrow B$ $CG \rightarrow D$ $AC \rightarrow B$ $CE \rightarrow A$ $CE \rightarrow G$

G? C? C+ \rightarrow C, so can't get D; G is not extraneous G+ \rightarrow G, so can't get D; C is not extraneous

Find the extraneous attribute in this FD:

Keep this FD as is

 $R = \{A, B, C, D, E, F, G, H\}$ F = {AC \rightarrow G, D \rightarrow EG, BC \rightarrow D, CG \rightarrow BD, ACD \rightarrow B, CE \rightarrow AG}

Find the canonical cover of F:

$AC \rightarrow G$
$D \rightarrow E $
$D \rightarrow G $
BC \rightarrow D
$CG \rightarrow B$
$CG \rightarrow D$
$AC \rightarrow B$
$CE \rightarrow A$
$CE \rightarrow G$

If we continue we will not find any extraneous attribute on LHS of any FD. So we are done with step #2

 $R = \{A, B, C, D, E, F, G, H\}$

 $F = \{AC \rightarrow G, D \rightarrow EG, BC \rightarrow D, CG \rightarrow BD, ACD \rightarrow B, CE \rightarrow AG\}$

Find the canonical cover of F:

 $AC \rightarrow G$ $D \rightarrow E \vee$ $D \rightarrow G \vee$ $BC \rightarrow D$ $CG \rightarrow B$ $CG \rightarrow D$ $AC \rightarrow B$ $CE \rightarrow A$ $CE \rightarrow G$

Find the redundant FDs:

(AC)+ \rightarrow ACBDEG ; so we got G from other FDs

Remove the entire FD from the list.

 $R = \{A,B,C,D,E,F,G,H\}$ F = {AC→G, D→EG, BC→D, CG→BD, ACD→B, CE→AG} Find the canonical cover of F:

Find the redundant FDs:

(CG)+ \rightarrow CGDEAB ; so we got B from other FDs

Remove the entire FD from the list.

 $R = \{A,B,C,D,E,F,G,H\}$ F = {AC→G, D→EG, BC→D, CG→BD, ACD→B, CE→AG} Find the canonical cover of F:

Find the redundant FDs:

(CE)+ → CEGD ; so we could not get A from other FDs

Keep this FD in the list.

 $R = \{A,B,C,D,E,F,G,H\}$ F = {AC→G, D→EG, BC→D, CG→BD, ACD→B, CE→AG} Find the canonical cover of F:

Find the redundant FDs:

(CE)+ \rightarrow CEABD**G** ; so we got **G** from other FDs

Remove this FD from the list.

 $R = \{A,B,C,D,E,F,G,H\}$ F = {AC→G, D→EG, BC→D, CG→BD, ACD→B, CE→AG} Find the canonical cover of F:

• A C->G-
$D \rightarrow E $
$D \rightarrow G $
BC \rightarrow D
€G ≻ B
CG → D
AC \rightarrow B
$CE \rightarrow A$
• -€E>-G-

Find the redundant FDs:
(CE)+ → CEABDG ; so we got G from other FDs
Remove this FD from the list.
End of step# 3

 $R = \{A, B, C, D, E, F, G, H\}$ $F = \{AC \rightarrow G, D \rightarrow EG, BC \rightarrow D, CG \rightarrow BD, ACD \rightarrow B, CE \rightarrow AG\}$ Find the canonical cover of F: $D \rightarrow E$ $D \rightarrow G$ $BC \rightarrow D$ $CG \rightarrow B$ $AC \rightarrow B$ Apply union (if any) on the remaining Fds $D \rightarrow EG$ The result is the canonical cover (Fc) of F

End of step# 4

 $CE \rightarrow A$

 $R = \{A,B,C,D,E,F,G,H\}$ $F = \{AC \rightarrow G, D \rightarrow EG, BC \rightarrow D, CG \rightarrow BD, ACD \rightarrow B, CE \rightarrow AG\}$ Find the canonical cover of F: $F_{C} = \{AC \rightarrow B, D \rightarrow EG, BC \rightarrow D, CG \rightarrow B, CE \rightarrow A\}$

$$F_{C} = \{AC \rightarrow B, D \rightarrow EG, BC \rightarrow D, CG \rightarrow D, CE \rightarrow A\}$$

* Different order of considering the extraneous attributes can result in different F_{C}

Example2: Computing a Canonical Cover

•
$$R = (A, B, C)$$

 $F = \{A \rightarrow BC$
 $B \rightarrow C$
 $A \rightarrow B$
 $AB \rightarrow C\}$

• The canonical cover is:

Example3: Computing a Canonical Cover

- Given $F = \{A \rightarrow C, AB \rightarrow C\}$
 - *B* is extraneous in $AB \to C$ because $\{A \to C, AB \to C\}$ is equivalent to $\{A \to C, A \to C\} = \{A \to C\}$
- Given $F = \{A \rightarrow C, AB \rightarrow CD\}$
 - *C* is extraneous in $AB \to CD$ because $\{A \to C, AB \to CD\}$ is equivalent to $\{A \to C, AB \to D\}$