Computing Canonical Cover

Dr. Bassam Hammo

Canonical Cover

- A canonical cover for F is a set of dependencies F_{c} such that
- F logically implies all dependencies in F_{c}, and
- F_{c} logically implies all dependencies in F , and
- No functional dependency in F_{c} contains an extraneous attribute, and
- Each left side of functional dependency in F_{c} is unique
- Intuitively, a canonical cover of Fis a "minimal" set of functional dependencies equivalent to F, having no redundant dependencies or redundant parts of dependencies

Extraneous Attributes

- Consider F, and a functional dependency, $A \rightarrow B$.
- "Extraneous": Are there any attributes in A or B that can be safely removed ?
- Without changing the constraints implied by F

Testing if an Attribute is Extraneous

- Consider a set F of functional dependencies and the functional dependency $\alpha \rightarrow \beta$ in F.
- To test if attribute $\mathrm{A} \in \alpha$ is extraneous in α

1. compute $(\{\alpha\}-A)^{+}$using the dependencies in F
2. check that $(\{\alpha\}-\mathrm{A})^{+}$contains A; if it does, A is extraneous

- To test if attribute $A \in \beta$ is extraneous in β

1. compute α^{+}using only the dependencies in

$$
F^{\prime}=(F-\{\alpha \rightarrow \beta\}) \cup\{\alpha \rightarrow(\beta-A)\},
$$

2. check that α^{+}contains A; if it does, A is extraneous

Computing Canonical Cover

$R=\{A, B, C, D, E, F, G, H\}$
$\mathrm{F}=\{\mathrm{AC} \rightarrow \mathrm{G}, \mathrm{D} \rightarrow \mathrm{EG}, \mathrm{BC} \rightarrow \mathrm{D}, \mathrm{CG} \rightarrow \mathrm{BD}, \mathrm{ACD} \rightarrow \mathrm{B}, \mathrm{CE} \rightarrow \mathrm{AG}\}$
Find the canonical cover of F .

1. Simplify all RHS (Decomposition)
2. For all FDs on LHS find a redundant (extraneous) attribute
3. Eliminate all redundant FDs
4. Apply Union if needed
5. The result is Fc

Computing Canonical Cover

$$
\begin{aligned}
& \mathrm{R}=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{~F}, \mathrm{G}, \mathrm{H}\} \\
& \mathrm{F}=\{\mathrm{AC} \rightarrow \mathrm{G}, \mathrm{D} \rightarrow \mathrm{EG}, \mathrm{BC} \rightarrow \mathrm{D}, \mathrm{CG} \rightarrow \mathrm{BD}, \mathrm{ACD} \rightarrow \mathrm{~B}, \mathrm{CE} \rightarrow \mathrm{AG}\}
\end{aligned}
$$

Find the canonical cover of F :

```
\[
\mathrm{AC} \rightarrow \mathrm{G}
\]
\[
\mathrm{D} \rightarrow \mathrm{E}
\]
\[
\mathrm{D} \rightarrow \mathrm{G}
\]
\[
\mathrm{BC} \rightarrow \mathrm{D}
\]
\[
\mathrm{CG} \rightarrow \mathrm{~B}
\]
\[
\mathrm{CG} \rightarrow \mathrm{D}
\]
\[
\mathrm{ACD} \rightarrow \mathrm{~B}
\]
\[
\mathrm{CE} \rightarrow \mathrm{~A}
\]
\[
\mathrm{CE} \rightarrow \mathrm{G}
\]
```


Computing Canonical Cover

$$
\begin{aligned}
& \mathrm{R}=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{~F}, \mathrm{G}, \mathrm{H}\} \\
& \mathrm{F}=\{\mathrm{AC} \rightarrow \mathrm{G}, \mathrm{D} \rightarrow \mathrm{EG}, \mathrm{BC} \rightarrow \mathrm{D}, \mathrm{CG} \rightarrow \mathrm{BD}, \mathrm{ACD} \rightarrow \mathrm{~B}, \mathrm{CE} \rightarrow \mathrm{AG}\}
\end{aligned}
$$

Find the canonical cover of F :
$\mathrm{AC} \rightarrow \mathrm{G}$
$\mathrm{D} \rightarrow \mathrm{E} V$
$\mathrm{D} \rightarrow \mathrm{G} \sqrt{ }$
$\mathrm{BC} \rightarrow \mathrm{D}$
$\mathrm{CG} \rightarrow \mathrm{B}$
$\mathrm{CG} \rightarrow \mathrm{D}$
$\mathrm{ACD} \rightarrow \mathrm{B}$
$\mathrm{CE} \rightarrow \mathrm{A}$
$\mathrm{CE} \rightarrow \mathrm{G}$
Find the extraneous attribute in this FD:
D?
(AC) $+\rightarrow$ ACGB, so we got B; D is extraneous and can be safely eliminated.

Rewrite the new FD as $\mathrm{AC} \rightarrow \mathrm{B}$

Computing Canonical Cover

$$
\begin{aligned}
& \mathrm{R}=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{~F}, \mathrm{G}, \mathrm{H}\} \\
& \mathrm{F}=\{\mathrm{AC} \rightarrow \mathrm{G}, \mathrm{D} \rightarrow \mathrm{EG}, \mathrm{BC} \rightarrow \mathrm{D}, \mathrm{CG} \rightarrow \mathrm{BD}, \mathrm{ACD} \rightarrow \mathrm{~B}, \mathrm{CE} \rightarrow \mathrm{AG}\}
\end{aligned}
$$

Find the canonical cover of F :

```
AC}->\textrm{G
D }->\textrm{E}\sqrt{}{
D}->\textrm{G}
BC}->\textrm{D
CG }->\textrm{B
CG }->\mathrm{ D
AC}->\textrm{B
CE}->\textrm{A
CE}->\textrm{G
```

Find the extraneous attribute in this FD:
A? C?
A+ \rightarrow A, so can't get G; C is not extraneous $C+\rightarrow C$, so can't get G; A is not extraneous

Keep this FD as is

Computing Canonical Cover

$$
\begin{aligned}
& \mathrm{R}=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{~F}, \mathrm{G}, \mathrm{H}\} \\
& \mathrm{F}=\{\mathrm{AC} \rightarrow \mathrm{G}, \mathrm{D} \rightarrow \mathrm{EG}, \mathrm{BC} \rightarrow \mathrm{D}, \mathrm{CG} \rightarrow \mathrm{BD}, \mathrm{ACD} \rightarrow \mathrm{~B}, \mathrm{CE} \rightarrow \mathrm{AG}\}
\end{aligned}
$$

Find the canonical cover of F :
$\mathrm{AC} \rightarrow \mathrm{G}$
$\mathrm{D} \rightarrow \mathrm{E} V$

$\mathrm{CG} \rightarrow \mathrm{D}$
$\mathrm{AC} \rightarrow$ B
Find the extraneous attribute in this FD:
B? C?
$B+\rightarrow B$, so can't get D; C is not extraneous
$\mathrm{C}+\rightarrow \mathrm{C}$, so can't get D ; B is not extraneous
Keep this FD as is
$\mathrm{CE} \rightarrow \mathrm{A}$
$\mathrm{CE} \rightarrow \mathrm{G}$

Computing Canonical Cover

$R=\{A, B, C, D, E, F, G, H\}$
$\mathrm{F}=\{\mathrm{AC} \rightarrow \mathrm{G}, \mathrm{D} \rightarrow \mathrm{EG}, \mathrm{BC} \rightarrow \mathrm{D}, \mathrm{CG} \rightarrow \mathrm{BD}, \mathrm{ACD} \rightarrow \mathrm{B}, \mathrm{CE} \rightarrow \mathrm{AG}\}$
Find the canonical cover of F :
$\mathrm{AC} \rightarrow \mathrm{G}$
$\mathrm{D} \rightarrow \mathrm{E} V$
$\mathrm{D} \rightarrow \mathrm{G} \sqrt{ }$
$\underset{\mathrm{CG} \rightarrow \mathrm{D}}{\mathrm{BC} \rightarrow \mathrm{D}}$
$\mathrm{AC} \rightarrow \mathrm{B}$
Find the extraneous attribute in this FD:
G? C?
$C+\rightarrow C$, so can't get B; G is not extraneous
$G+\rightarrow G$, so can't get B; C is not extraneous
Keep this FD as is
$\mathrm{CE} \rightarrow \mathrm{A}$
$\mathrm{CE} \rightarrow \mathrm{G}$

Computing Canonical Cover

$$
\begin{aligned}
& \mathrm{R}=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{~F}, \mathrm{G}, \mathrm{H}\} \\
& \mathrm{F}=\{\mathrm{AC} \rightarrow \mathrm{G}, \mathrm{D} \rightarrow \mathrm{EG}, \mathrm{BC} \rightarrow \mathrm{D}, \mathrm{CG} \rightarrow \mathrm{BD}, \mathrm{ACD} \rightarrow \mathrm{~B}, \mathrm{CE} \rightarrow \mathrm{AG}\}
\end{aligned}
$$

Find the canonical cover of F :
$\mathrm{AC} \rightarrow \mathrm{G}$
$\mathrm{D} \rightarrow \mathrm{E} V$
$\mathrm{D} \rightarrow \mathrm{G} \sqrt{ }$
$\mathrm{BC} \rightarrow$ D
$\underset{\substack{\mathrm{AC} \rightarrow \mathrm{B}}}{\substack{\mathrm{CG} \rightarrow \mathrm{B} \\ \mathrm{CG} \rightarrow \mathrm{D} \\ \hline}}$
Find the extraneous attribute in this FD:
G? C?
$C+\rightarrow C$, so can't get D; G is not extraneous
$\mathrm{G}+\rightarrow \mathrm{G}$, so can't get D ; C is not extraneous
Keep this FD as is
$\mathrm{CE} \rightarrow \mathrm{A}$
$\mathrm{CE} \rightarrow \mathrm{G}$

Computing Canonical Cover

$$
\begin{aligned}
& \mathrm{R}=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{~F}, \mathrm{G}, \mathrm{H}\} \\
& \mathrm{F}=\{\mathrm{AC} \rightarrow \mathrm{G}, \mathrm{D} \rightarrow \mathrm{EG}, \mathrm{BC} \rightarrow \mathrm{D}, \mathrm{CG} \rightarrow \mathrm{BD}, \mathrm{ACD} \rightarrow \mathrm{~B}, \mathrm{CE} \rightarrow \mathrm{AG}\}
\end{aligned}
$$

Find the canonical cover of F :
$\mathrm{AC} \rightarrow \mathrm{G}$
$\mathrm{D} \rightarrow \mathrm{E} V$
$\mathrm{D} \rightarrow \mathrm{G} \sqrt{ }$
$\mathrm{BC} \rightarrow$ D
$\mathrm{CG} \rightarrow$ B
$\mathrm{CG} \rightarrow \mathrm{D}$
$\mathrm{AC} \rightarrow \mathrm{B}$
$\mathrm{CE} \rightarrow \mathrm{A}$
$\mathrm{CE} \rightarrow \mathrm{G}$

If we continue we will not find any extraneous attribute on LHS of any FD. So we are done with step \#2

Computing Canonical Cover

$$
\begin{aligned}
& \mathrm{R}=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{~F}, \mathrm{G}, \mathrm{H}\} \\
& \mathrm{F}=\{\mathrm{AC} \rightarrow \mathrm{G}, \mathrm{D} \rightarrow \mathrm{EG}, \mathrm{BC} \rightarrow \mathrm{D}, \mathrm{CG} \rightarrow \mathrm{BD}, \mathrm{ACD} \rightarrow \mathrm{~B}, \mathrm{CE} \rightarrow \mathrm{AG}\}
\end{aligned}
$$

Find the canonical cover of F :

```
AC}->\textrm{G
D}->\textrm{EV
D}->\textrm{G}\sqrt{}{
BC}->\textrm{D
CG }->\textrm{B
CG}->\textrm{D
AC}->\textrm{B
CE}->\textrm{A
CE}->\textrm{G
```

Find the redundant FDs:
$(\mathrm{AC})+\rightarrow$ ACBDEG; so we got G from other FDs
Remove the entire FD from the list.

Computing Canonical Cover

$$
\begin{aligned}
& \mathrm{R}=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{~F}, \mathrm{G}, \mathrm{H}\} \\
& \mathrm{F}=\{\mathrm{AC} \rightarrow \mathrm{G}, \mathrm{D} \rightarrow \mathrm{EG}, \mathrm{BC} \rightarrow \mathrm{D}, \mathrm{CG} \rightarrow \mathrm{BD}, \mathrm{ACD} \rightarrow \mathrm{~B}, \mathrm{CE} \rightarrow \mathrm{AG}\}
\end{aligned}
$$

Find the canonical cover of F :
. $A \mathrm{C} \rightarrow \mathrm{G}^{-}$
$\mathrm{D} \rightarrow \mathrm{E} \sqrt{ }$
$\mathrm{D} \rightarrow \mathrm{G} \sqrt{ }$
\(\xrightarrow[\substack{

C G \rightarrow D}]{\)| $\mathrm{BC} \rightarrow \mathrm{D}$ |
| :--- |
| $\mathrm{CG} \rightarrow \mathrm{B}$ |$}$

$\mathrm{AC} \rightarrow \mathrm{B}$
$\mathrm{CE} \rightarrow \mathrm{A}$
$\mathrm{CE} \rightarrow \mathrm{G}$

Find the redundant FDs:
(CG) $+\rightarrow$ CGDEAB ; so we got \mathbf{B} from other FDs
Remove the entire FD from the list.

Computing Canonical Cover

$$
\begin{aligned}
& \mathrm{R}=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{~F}, \mathrm{G}, \mathrm{H}\} \\
& \mathrm{F}=\{\mathrm{AC} \rightarrow \mathrm{G}, \mathrm{D} \rightarrow \mathrm{EG}, \mathrm{BC} \rightarrow \mathrm{D}, \mathrm{CG} \rightarrow \mathrm{BD}, \mathrm{ACD} \rightarrow \mathrm{~B}, \mathrm{CE} \rightarrow \mathrm{AG}\}
\end{aligned}
$$

Find the canonical cover of F :
. $\mathrm{AC} \rightarrow \mathrm{G}^{-}$
$\mathrm{D} \rightarrow \mathrm{E} \sqrt{ }$
$\mathrm{D} \rightarrow \mathrm{G} \sqrt{ }$
$\mathrm{BC} \rightarrow \mathrm{D}$

- $\in G \rightarrow B-$
$\mathrm{CG} \rightarrow \mathrm{D}$
Find the redundant FDs:
(CE) $+\rightarrow$ CEGD ; so we could not get A from other FDs

Keep this FD in the list.

Computing Canonical Cover

$$
\begin{aligned}
& \mathrm{R}=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{~F}, \mathrm{G}, \mathrm{H}\} \\
& \mathrm{F}=\{\mathrm{AC} \rightarrow \mathrm{G}, \mathrm{D} \rightarrow \mathrm{EG}, \mathrm{BC} \rightarrow \mathrm{D}, \mathrm{CG} \rightarrow \mathrm{BD}, \mathrm{ACD} \rightarrow \mathrm{~B}, \mathrm{CE} \rightarrow \mathrm{AG}\}
\end{aligned}
$$

Find the canonical cover of F :
. $A(\rightarrow-$
$\mathrm{D} \rightarrow \mathrm{E} \sqrt{ }$
$\mathrm{D} \rightarrow \mathrm{G} \sqrt{ }$
$\mathrm{BC} \rightarrow \mathrm{D}$

- $\subset \rightarrow \rightarrow$ B-
$\mathrm{CG} \rightarrow \mathrm{D}$
$\mathrm{AC} \rightarrow \mathrm{B}$
$\mathrm{CE} \rightarrow \mathrm{A}$
$\mathrm{CE} \rightarrow \mathrm{G}$

Computing Canonical Cover

$$
\begin{aligned}
& \mathrm{R}=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{~F}, \mathrm{G}, \mathrm{H}\} \\
& \mathrm{F}=\{\mathrm{AC} \rightarrow \mathrm{G}, \mathrm{D} \rightarrow \mathrm{EG}, \mathrm{BC} \rightarrow \mathrm{D}, \mathrm{CG} \rightarrow \mathrm{BD}, \mathrm{ACD} \rightarrow \mathrm{~B}, \mathrm{CE} \rightarrow \mathrm{AG}\}
\end{aligned}
$$

Find the canonical cover of F :

- $\mathrm{AC} \rightarrow \mathrm{G}^{-}$
$\mathrm{D} \rightarrow \mathrm{E} V$
$\mathrm{D} \rightarrow \mathrm{G} \sqrt{ }$
$\mathrm{BC} \rightarrow \mathrm{D}$
- $\boldsymbol{\epsilon G \rightarrow - \mathrm { B }}$
$\mathrm{CG} \rightarrow \mathrm{D}$
$\mathrm{AC} \rightarrow$ B
$\mathrm{CE} \rightarrow \mathrm{A}$
- $\epsilon E \rightarrow{ }_{G}$

Find the redundant FDs:
(CE) $+\rightarrow$ CEABDG; so we got G from other FDs
Remove this FD from the list.
End of step\# 3

Computing Canonical Cover

$$
\begin{aligned}
& \mathrm{R}=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{~F}, \mathrm{G}, \mathrm{H}\} \\
& \mathrm{F}=\{\mathrm{AC} \rightarrow \mathrm{G}, \mathrm{D} \rightarrow \mathrm{EG}, \mathrm{BC} \rightarrow \mathrm{D}, \mathrm{CG} \rightarrow \mathrm{BD}, \mathrm{ACD} \rightarrow \mathrm{~B}, \mathrm{CE} \rightarrow \mathrm{AG}\}
\end{aligned}
$$

Find the canonical cover of F :
$\mathrm{D} \rightarrow \mathrm{E}$
$\mathrm{D} \rightarrow \mathrm{G}$
$\mathrm{BC} \rightarrow \mathrm{D}$
$\mathrm{CG} \rightarrow \mathrm{B}$
$\mathrm{AC} \rightarrow \mathrm{B}$
$\mathrm{CE} \rightarrow \mathrm{A}$

Apply union (if any) on the remaining Fds
$\mathrm{D} \rightarrow \mathrm{EG}$
The result is the canonical cover (Fc) of F
End of step\# 4

Computing Canonical Cover

$\mathrm{R}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}\}$
$\mathrm{F}=\{\mathrm{AC} \rightarrow \mathrm{G}, \mathrm{D} \rightarrow \mathrm{EG}, \mathrm{BC} \rightarrow \mathrm{D}, \mathrm{CG} \rightarrow \mathrm{BD}, \mathrm{ACD} \rightarrow \mathrm{B}, \mathrm{CE} \rightarrow \mathrm{AG}\}$
Find the canonical cover of F :
$\mathrm{F}_{\mathrm{C}}=\{\mathrm{AC} \rightarrow \mathrm{B}, \mathrm{D} \rightarrow \mathrm{EG}, \mathrm{BC} \rightarrow \mathrm{D}, \mathrm{CG} \rightarrow \mathrm{B}, \mathrm{CE} \rightarrow \mathrm{A}\}$
$\mathrm{F}_{\mathrm{C}}=\{\mathbf{A C} \rightarrow \mathbf{B}, \mathbf{D} \rightarrow \mathbf{E G}, \mathbf{B C} \rightarrow \mathbf{D}, \mathbf{C G} \rightarrow \mathbf{D}, \mathbf{C E} \rightarrow \mathbf{A}\}$

* Different order of considering the extraneous attributes can result in different F_{C}

Example2: Computing a Canonical Cover

- $R=(A, B, C)$
$\begin{aligned} F=\{A & \rightarrow B C \\ B & \rightarrow C \\ A & \rightarrow B \\ A B & \rightarrow C\}\end{aligned}$
- The canonical cover is:

Example3: Computing a Canonical Cover

- Given $F=\{A \rightarrow C, A B \rightarrow C\}$
- B is extraneous in $A B \rightarrow C$ because $\{A \rightarrow C, A B \rightarrow C\}$ is equivalent to $\{A \rightarrow C, A \rightarrow C\}=\{A \rightarrow C\}$
- Given $F=\{A \rightarrow C, A B \rightarrow C D\}$
- C is extraneous in $A B \rightarrow C D$ because $\{A \rightarrow C, A B \rightarrow C D\}$ is equivalent to $\{A \rightarrow C, A B \rightarrow D\}$

