
Decomposition, Decomposition, Decomposition, Decomposition, 3333NF, BCNFNF, BCNFNF, BCNFNF, BCNF

Dr. Dr. Dr. Dr. BassamBassamBassamBassam HammoHammoHammoHammo

Decomposition of a Relation Schema

� If a relation is not in a desired normal form, it can be
decomposed into multiple relations that each are in that normal
form.

� Suppose that relation R contains attributes A1 ... An. A
decomposition of R consists of replacing R by two or more decomposition of R consists of replacing R by two or more
relations such that:
� Each new relation scheme contains a subset of the attributes of
R, and

� Every attribute of R appears as an attribute of at least one of the
new relations.

Normalization Using Functional Dependencies

� When we decompose a relation schema R with a set of
functional dependencies F into R1, R2,.., Rn we want

� Lossless-join Decomposition (complete reproduction)

�No Redundancy (BCNF or 3NF)

�Dependency Preservation

Lossless-join Decomposition

� All attributes of an original schema (R) must appear in the
decomposition (R1, R2):

R = R1 ∪ R2

� For all possible relations Ri on schema R

R = ∏ (R) ∏ (R) R = ∏R1 (R) ∏R2 (R)

� We Want to be able to reconstruct big (e.g. universal)
relation by joining smaller ones (using natural joins)

(i.e. R1 R2 = R)

Example (Lossless-Join)

A B C

A C

a1 c1

a1 c2

decompose
join

A B CA B C

a1 b1 c1

a1 b2 c2 B C

b1 c1

b2 c2

A B C

a1 b1 c1

a1 b2 c2

Example (Lossy-Join)

A B C

A B

a1 b1

a1 b2

A B C

a b c

decompose
join

A B C

a1 b1 c1

a1 b2 c2 A C

a1 c1

a1 c2

a1 b1 c1

a1 b1 c2

a1 b2 c1

a1 b2 c2

Testing for Lossless-Join Decomposition

� Rule: A decomposition of R into (R1, R2) is lossless, iff:

R1 ∩ R2 ���� R1 or

R1 ∩ R2 ���� R2 R1 ∩ R2 ���� R2

in F+.

Exercise: LosslessExercise: LosslessExercise: LosslessExercise: Lossless----join Decompositionjoin Decompositionjoin Decompositionjoin Decomposition

R = {A,B,C,D,E}.

F = {A→BC, CD →E, B → D, E→A }.

Is the following decomposition a lossless join?

1. R1 = {A,B,C}, R2 ={A,D,E}

Since R1 ∩∩∩∩ R2 = A, and A is a key for R1,Since R1 ∩∩∩∩ R2 = A, and A is a key for R1,

the decomposition is lossless join.

2. R1 = {A,B,C}, R2 ={C,D,E}

Since R1 ∩∩∩∩ R2 = C, and C is not a key for R1 or
R2, the decomposition is not lossless join.

Dependency Preserving Decomposition

� The decomposition of a relation scheme R with FDs F is a set
of tables (fragments) Ri with FDs Fi

� Fi is the subset of dependencies in F+ (the closure of F) that
include only attributes in Ri.

� The decomposition is dependency preserving iff � The decomposition is dependency preserving iff

(∪∪∪∪i Fi)+ = F+

� In other words: we want to minimize the cost of global integrity
constraints based on FD’s (i.e. avoid big joins in assertions)

(F1 ∪∪∪∪ F2 ∪∪∪∪… ∪∪∪∪ Fn)
+ = F +

Exercise: Exercise: Exercise: Exercise: NonNonNonNon----Dependency Preserving DecompositionDependency Preserving DecompositionDependency Preserving DecompositionDependency Preserving Decomposition

R = (A, B, C), F = {A→B, B→C, A→→→→C}

Key: A

Assume there is a dependency B→→→→ C, where the LHS is not
the key, meaning that there can be considerable redundancy
in R. in R.

Solution: Break it in two tables R1(A,B), R2(A,C)

Exercise: Exercise: Exercise: Exercise: NonNonNonNon----Dependency Preserving DecompositionDependency Preserving DecompositionDependency Preserving DecompositionDependency Preserving Decomposition

The decomposition is lossless because the common attribute A is a
key for R1 (and R2)

The decomposition is not dependency preserving because:
F1={A→B},

F2={A→C} and (F1∪F2)+ ≠ F+ F2={A→C} and (F1∪F2)+ ≠ F+

But, we lost the FD {B→C}

� In practical terms, each FD is implemented as a constraint or
assertion, which it is checked when there are updates. In the
above example, in order to find violations, we have to join R1 and
R2. Which can be very expensive.

Exercise: Exercise: Exercise: Exercise: Dependency Preserving Decomposition Dependency Preserving Decomposition Dependency Preserving Decomposition Dependency Preserving Decomposition

R = (A, B, C), F = {A→B, B→C, A→→→→C} Key: A

Solution: Break it in two tables R1(A,B), R2(B,C)

� The decomposition is lossless because the common attribute B is
a key for R2

� The decomposition is dependency preserving because
F1={A→B}, F2={B→C} and (F1∪F2)+=F+

� Violations can be found by inspecting the individual tables,
without performing a join.

� What about A � C ?

If we can check A � B, and B � C, A � C is implied.

Exercise Exercise Exercise Exercise 2 2 2 2 : FD: FD: FD: FD----Preserving DecompositionPreserving DecompositionPreserving DecompositionPreserving Decomposition

R = {A,B,C,D,E}.

F = {A→BC, CD →E, B → D, E→A }

R1 = {A,B,C}, R2 = {A,D,E}

Is the above decomposition dependency-preserving?

No.

CD →→→→ E and B →→→→ D are lost.

3NF

Third Normal Form Third Normal Form Third Normal Form Third Normal Form
DecompositionDecomposition

Third Normal Form

3NF: A schema R is in third normal form (3NF) if

for all FD αααα →→→→ ββββ in F +, at least one of the following holds:
(1) α → β is trivial (i.e., β ⊆ α).

(2)α is a superkey for R.(2)α is a superkey for R.

(3)Each attribute A in β – α is contained in a candidate key for R (prime).

� The decomposition is both lossless-join and
dependency-preserving

Third Normal Form

� A relational schema R is in 3NF if for every FD X→ A
associated with R either:

�A ⊆ X (i.e., the FD is trivial) orA ⊆ X (i.e., the FD is trivial) or

�X is a superkey of R or

�A is part of some key (not just superkey!)

�3NF weaker than BCNF (every schema that is
in BCNF is also in 3NF)

Third Normal Form
� Compromise - Not all redundancy removed, but
dependency-preserving decompositions are always possible

� 3NF decomposition is based on the concept of minimal cover
of a set of FDs

Decomposition into 3NF

� Decomposition

� Given: relation R, set F of functional dependencies
� Find: decomposition of R into a set of 3NF relation Ri

� Algorithm:

(1) Eliminate redundant FDs, resulting in a canonical cover Fc of F
(2) Create a relation Ri = XY for each FD X → Y in Fc
(3) If the key K of R does not occur in any relation Ri, create one more

relation Ri=K

Computing Minimal Cover
� step 1: RHS of each FD is a single attribute.

� step 2: Eliminate unnecessary attributes from LHS.

� Algorithm: If FD XB → A ∈T (where B and A are single
attributes) and X → A is entailed by T, then B was unnecessary

� step 3: Delete unnecessary FDs from T
� Algorithm: If T - {f} entails f, then f is unnecessary.� Algorithm: If T - {f} entails f, then f is unnecessary.

� If f is X → A then check if A ∈ X+
T-{f}

Example

� {A→B, ABCD→E, EF→GH, ACDF→EG}

� Make RHS a single attribute: {A→B, ABCD→E,
EF→G, EF→H, ACDF→E, ACDF→G}

� Minimize LHS: ACD→E instead of ABCD→E

� Eliminate redundant FDs
� Can ACDF→G be removed?

� Can ACDF→E be removed?

� Final answer: {A→B, ACD→E, EF→G, EF→H}

Example
� Relation: R=CSJDPQV

� FDs: C→CSJDPQV, SD→P, JP→C,J→S
� Find minimal cover: {C→J, C→D, C→Q, C→V, JP→C,
J→S, SD→P}

� Combine LHS: {C→JDQV, JP→C, J→S, SD→P}� Combine LHS: {C→JDQV, JP→C, J→S, SD→P}
� New relations: CJDQV, JPC, JS, SDP
� Since CJDQV is a superkey we are done!

BCNF

BCNF Normal Form BCNF Normal Form BCNF Normal Form BCNF Normal Form
DecompositionDecomposition

Boyce-Codd Normal Form

� BCNF: A schema R is in BCNF with respect to a set F of functional
dependencies, if for all functional dependencies in

� F + of the form α→ β, where α ⊆ R and β ⊆ R, at least one of the following
holds:

(1) α → β is trivial (i.e., β ⊆ α)

(2) α is a superkey for R(2) α is a superkey for R

� In other words, the left part of any non-trivial dependency must be a superkey.

� If we do not have redundancy in F, then for each α→ β, α must be a candidate
key.

� The decomposition is lossless-join but may not be
dependency-preserving

Decomposing into BCNF Schemas

� For all dependencies A � B in F+, check if A is a superkey

� By using attribute closure

� If not, then

� Choose a dependency in F+ that breaks the BCNF rules, say A � B

� Create R1 = A B� Create R1 = A B

� Create R2 = A (R – B –A)

� Note that: R1 ∩ R2 = A and A �AB (= R1), so this is lossless decomposition

� Repeat for R1, and R2

� By defining F1+ to be all dependencies in F that contain only attributes in R1

� Similarly F2+

BCNF Decomposition

• Suppose R = (R; F) is not in BCNF

• In general: Let X → Y ∈ F be a violating FD
•Decompose into XY and (R – Y) ∪ X•Decompose into XY and (R – Y) X

If either R-A or XA is not in BCNF, decompose
them further recursively

BCNF Example #1

R = (A, B, C)

F = {A � B, B � C}

Candidate keys = {A}

BCNF? = No. B ���� C violates.

R2 = (A, B)

F2 = {A � B}

Candidate keys = {A}

BCNF? = true

R1 = (B, C)

F1 = {B � C}

Candidate keys = {B}

BCNF? = true

B � C

A ���� B

R = (A, B, C, D, E)

F = {A � B, BC � D}

Candidate keys = {ACE}

BCNF = Violated by {A � B, BC � D} etc…

R1 = (A, B)

F1 = {A � B}

R2 = (A, C, D, E)

F2 = {AC � D}

From A � B and BC � D by
pseudo-transitivity

BCNF Example #2

F1 = {A � B}

Candidate keys = {A}

BCNF = true

F2 = {AC � D}

Candidate keys = {ACE}

BCNF = false (AC � D)

AC ���� D

R3 = (A, C, D)

F3 = {AC � D}

Candidate keys = {AC}

BCNF = true

R4 = (A, C, E)

F4 = {} [[only trivial]]

Candidate keys = {ACE}

BCNF = true

Dependency preservation ???

We can check:

A � B (R1), AC � D (R3),

but we lost BC � D

So this is not a dependency

-preserving decomposition

Example #3

BC ���� D

R = (A, B, C, D, E)

F = {A � B, BC � D}

Candidate keys = {ACE}

BCNF = Violated by {A � B, BC � D} etc…

R1 = (B, C, D)

F1 = {BC � D}

R2 = (B, C, A, E)

F2 = {A � B}F1 = {BC � D}

Candidate keys = {BC}

BCNF = true

F2 = {A � B}

Candidate keys = {ACE}

BCNF = false (A � B)

A ���� B

R3 = (A, B)

F3 = {A � B}

Candidate keys = {A}

BCNF = true

R4 = (A, C, E)

F4 = {} [[only trivial]]

Candidate keys = {ACE}

BCNF = true

Dependency preservation ???

We can check:

BC � D (R1), A � B (R3),

Dependency-preserving

decomposition

Example #4

A ���� BC

R = (A, B, C, D, E, H)

F = {A � BC, E � HA}

Candidate keys = {DE}

BCNF = Violated by {A � BC} etc…

R1 = (A, B, C)

F1 = {A � BC}

R2 = (A, D, E, H)

F2 = {E � HA}F1 = {A � BC}

Candidate keys = {A}

BCNF = true

F2 = {E � HA}

Candidate keys = {DE}

BCNF = false (E � HA)

E ���� HA

R3 = (E, H, A)

F3 = {E � HA}

Candidate keys = {E}

BCNF = true

R4 = (ED)

F4 = {} [[only trivial]]

Candidate keys = {DE}

BCNF = true

Dependency preservation ???

We can check:

A � BC (R1), E � HA (R3),

Dependency-preserving

decomposition

More ExamplesMore Examples

Example #5: BCNF Decomposition

� Relation: R=CSJDPQV

� FDs: C→CSJDPQV, SD→P, JP→C,J→S
� JP→C is OK, since JP is a superkey
SD→P is a violating FD� SD→P is a violating FD

� Decompose into R1=CSJDQV and R2=SDP

� J→S is still a violation in R1
� Decompose R1: CJDQV and JS
� Final set: CJDQV, JS, SDP

� Order matters: what happens if we use J→S first?

R =(A, B, C, D).

F = {C→D, C→A, B→C}.

Question 1: Identify all candidate keys for R.

Exercise 3

Question 2: Identify the best normal form that R satisfies.

Question 3: Decompose R into a set of BCNF relations.

Question 4: Decompose R into a set of 3NF relations.

R =(A, B, C, D).

F = {C→D, C→A, B→C}.

Question 1: Identify all candidate keys for R.

B+ = B (B→B)

Exercise 3 Solution

B+ = B (B→B)
= BC (B→C)
= BCD (C→D)
= ABCD (C→A)

so the candidate key is B.

B is the ONLY candidate key, because nothing determines B:
There is no rule that can produce B, except B →B.

R =(A, B, C, D).

F = {C→D, C→A, B→C}.

Question 2: Identify the best normal form that R satisfies.

R is not 3NF, because:

Exercise 3 Solution

R is not 3NF, because:

C→D causes a violation,
C→D is non-trivial ({D} ⊄ {C}).
C is not a superkey.
D is not part of any candidate key.

C→A causes a violation
Similar to above

B→C causes no violation
Since R is not 3NF, it is not BCNF either.

R =(A, B, C, D).

F = {C→D, C→A, B→C}.

Question 3: Decompose R into a set of BCNF relations

(1)C→D and C→A both cause violations of BCNF.

Exercise 3 Solution

(1)C D and C A both cause violations of BCNF.

Take C→D: decompose R to R1= {A, B, C} , R2={C, D}.

(2)Now check for violations in R1 andR2. (Actually, using F
+)

R1 still violates BCNF because of C→A.

Decompose R1 to R11 = {B, C} R12 = {C, A}.

Final decomposition: R2 = {C, D}, R11 = {B, C}, R12 = {C, A}.

No more violations: Done!

R =(A, B, C, D).

F = {C→D, C→A, B→C}.

Question 4: Decompose R into a set of 3NF relations.

Exercise 3 Solution

The canonical cover is Fc = {C→DA, B→C}.

For each functional dependency in Fc we create a table:

R1 = {C, D, A}, R2 = {B, C}.

The table R2 contains the candidate key for R – we done.

Exercise 4

R = (A, B, C, D)

F = {AB→C, AB→D, C→A, D→B}

1. Is R in 3NF, why? If it is not, decompose it into 3NF

2. Is R in BCNF, why? If it is not, decompose it into BCNF

Exercise 4 Solution

R = (A, B, C, D)

F = {AB→C, AB→D, C→A, D→B}

1. Is R in 3NF, why? If it is not, decompose it into 3NF

Yes.

Find all the Candidate Keys: Find all the Candidate Keys:

AB, BC, CD, AD

Check all FDs in F for 3NF condition

2. Is R in BCNF, why? If it is not, decompose it into BCNF

No. Because for C→A, C is not a superkey. Similar for D→B

R1 = {C, D}, R2 = {A, C}, R3 = {B, D}

Summary
� Step 1: BCNF is a good form for relation

� If a relation is in BCNF, it is free of redundancies that can be detected using FDs.

� Step 2 : If a relation is not in BCNF, we can try to decompose it into a
collection of BCNF relations.

� Step 3: If a lossless-join dependency-preserving decomposition into
BCNF is not possible (or unsuitable given typical queries), consider
decomposition into 3NF.

� Note: Decompositions should be carried out while keeping performance
requirements in mind.

