Chapter 6 Estimation and Confidence Interval

Single Mean	Two Means
$\bar{X} \pm Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$	$(\bar{X}_1 - \bar{X}_2) \pm Z_{1 - \frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
σ known	σ_1 and σ_2 known
$\bar{X} \pm t_{1-\frac{\alpha}{2},(n-1)} \frac{S}{\sqrt{n}}$	$(\bar{X}_1 - \bar{X}_2) \pm t_{1 - \frac{\alpha}{2}} (n_1 + n_2 - 2) S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$
σ unknown	σ_1 and σ_2 unknown
Single Proportion	Two Proportions
For large sample size $(n \ge 30, np > 5, nq > 5)$	For large sample size $(n_1 \ge 30, n_1p_1 > 5, n_1q_1 > 5)$ $(n_2 \ge 30, n_2p_2 > 5, n_2q_2 > 5)$
$\hat{p} \pm Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p}\hat{q}}{n}}$	$(\hat{p}_1 - \hat{p}_2) \pm Z_{1 - \frac{\alpha}{2}} \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}}$

Estimation and Confidence Interval

$$S_p^2 = \frac{S_1^2(n_1 - 1) + S_2^2(n_2 - 1)}{n_1 + n_2 - 2}$$

$$\bar{X} \pm \underbrace{\begin{pmatrix} \text{Reliability coefficeint} \\ \bar{Z}_{1-\frac{\alpha}{2}} & \frac{\sigma}{\sqrt{n}} \end{pmatrix}}_{\text{margin of error}}_{or}_{or}_{precision of the estimate}$$

Question 1:

Suppose we are interested in making some statistical inference about the mean μ , of a normal population with standard deviation $\sigma = 2$. Suppose that a random sample of size n = 49 from this population gave a sample mean $\overline{X} = 4.5$.

a. Find the upper limit of 95% of the confident interval for μ

$\sigma = 2 \qquad \bar{X} = 4.5 \qquad n = 49$
$95\% \to \alpha = 0.05$ $Z_{1-\frac{\alpha}{2}} = Z_{0.975} = 1.96$
$\bar{X} + \left(Z_{1-\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}} \right) = 4.5 + \left(1.96 \times \frac{2}{7} \right) = 5.06$

b. Find the lower limit of 95% of the confident interval for $\,\mu$

$$\bar{X} - \left(Z_{1-\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}\right) = 4.5 - \left(1.96 \times \frac{2}{7}\right) = 3.94$$

Question 2:

A researcher wants to estimate the mean of a life span a certain bulb. Suppose that the distribution is normal with standard deviation 5 hours. Suppose that the researcher selected a random sample of 49 bulbs and found that the sample mean is 390 hours.

$$\sigma=5$$
 , $\overline{X}=390$, $n=49$

a. find $Z_{0.975}$:

 $Z_{0.975} = 1.96$

b. find a point estimate for μ

$$E(\overline{X}) = \hat{\mu} = \overline{X} = 390$$

c. Find the upper limit of 95% of the confident interval for $\,\mu$

$$\overline{X} + \left(Z_{1-\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}\right) = 390 + \left(1.96 \times \frac{5}{\sqrt{49}}\right) = 391.4$$
d. Find the lower limit of 95% of the confident interval for μ

$$\overline{X} - \left(Z_{1-\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}\right) = 390 - \left(1.96 \times \frac{5}{\sqrt{49}}\right) = 388.6$$

Question 3:

A sample of 16 college students were asked about time they spent doing their homework. It was found that the average to be 4.5 hours. Assuming normal population with standard deviation 0.5 hours.

$$\sigma = 0.5 \quad \overline{X} = 4.5 \quad n = 16$$

1. The point estimate for μ is:

|--|

2. The standard error of \overline{X} is:

S. E(
$$\overline{X}$$
) = $\frac{\sigma}{\sqrt{n}} = \frac{0.5}{\sqrt{16}}$

A 0.125 hours B 0.266 hours C 0.206 hours D 0.245 hours

3. The correct formula for calculating 100 $(1 - \alpha)$ % confidence interval for μ is:

A	$\overline{X} \pm t_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$	В	$\overline{\mathbf{X}} \pm \mathbf{Z}_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$	С	$\overline{X} \pm Z_{1-\frac{\alpha}{2}} \frac{\sigma^2}{n}$	D	$\overline{X} \pm t_{1-\frac{\alpha}{2}} \frac{\sigma^2}{n}$
---	---	---	---	---	--	---	--

4. The upper limit of 95% confidence interval for μ is:

	Α	4.745	В	4.531	С	4.832	D	4.891
--	---	-------	---	-------	---	-------	---	-------

5. The lower limit of 95% confidence interval for μ is:

А	5.531	В	7.469	С	3.632	D	4.255
---	-------	---	-------	---	-------	---	-------

6. The length of the 95% confidence interval for μ is:

Length = 4.745 - 4.255 = 0.49

А	4.74	В	0.49	С	0.83	D	0.89
---	------	---	------	---	------	---	------

Question 4:

Let us consider a hypothetical study on the height of women in their adulthood. A sample of 24 women is drown from a normal distribution with population mean μ and variance σ^2 . The sample mean and variance of height of the selected women are 151 cm and 18.65 cm² respectively. Using given data, we want to constract a 99% confidentce interval for the mean height of the adult women in the populatopn from which the sample was drown randomly.

$$\overline{X} = 151$$
 ; $n = 24$; $S^2 = 18.65 \implies S = 4.32$

a. Point estimate for μ

 $\hat{\mu}=\overline{X}=151$

b. Find the upper limit of 99% of the confident interval for $\,\mu$

$$\overline{X} + \left(t_{1-\frac{\alpha}{2},n-1} \times \frac{S}{\sqrt{n}}\right) \qquad 99\% \to \alpha = 0.01$$
$$t_{1-\frac{\alpha}{2},n-1} = t_{1-\frac{0.01}{2},24-1}$$
$$= t_{0.995,23} = 2.807$$

c. Find the lower limit of 99% of the confident interval for μ

$$\overline{X} - \left(t_{1-\frac{\alpha}{2},n-1} \times \frac{s}{\sqrt{n}}\right)$$
$$= 151 - \left(2.807 \times \frac{4.32}{\sqrt{24}}\right) = 148.5247$$

Estimation and Confidence Interval: Two Means

$$I - (\bar{X}_1 - \bar{X}_2) \pm \left(Z_{1 - \frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \right)$$

$$2 - (\bar{X}_1 - \bar{X}_2) \pm \left(t_{1 - \frac{\alpha}{2}, n_1 + n_2 - 2} Sp \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \right)$$

$$S_p^2 = \frac{S_1^2(n_1 - 1) + S_2^2(n_2 - 1)}{n_1 + n_2 - 2}$$

Question 5:

The tensile strength of type I thread is approximately normally distributed with standard deviation of 6.8 kg. A sample of 20 pieces of the thread has an average tensile strength of 72.8 kg. Another type of thread (type II) is approximately followed normal distribution with standard deviation 6.8 kg. A sample of 25 pieces of the thread has an average tensile strength pf 64.4 kg. then for 98% confidence interval of the difference in tensile strength means between type I and type II, we have:

Theard 1:
$$n_1 = 20$$
, $\overline{X}_1 = 72.8$, $\sigma_1 = 6.8$
Thread 2: $n_2 = 25$, $\overline{X}_2 = 64.4$, $\sigma_2 = 6.8$
 $98\% \rightarrow \alpha = 0.02 \rightarrow Z_{1-\frac{\alpha}{2}} = Z_{0.99} = 2.325$
 $(\overline{X}_1 - \overline{X}_2) \pm \left(Z_{1-\frac{\alpha}{2}} \times \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\right)$
 $(72.8 - 64.4) \pm \left(2.325 \times \sqrt{\frac{6.8^2}{20} + \frac{6.8^2}{25}}\right)$

(3.657, 13.143)

(1): The lower limit = 3.657

(2): The upper limit = 13.143

Question 6:

	First sample	Second sample
Sample size (n)	12	14
Sample mean (\overline{X})	10.5	10
Sample variance (S ²)	4	5

1. Estimate the difference $\mu_1 - \mu_2$:

$$\hat{\mu}_1 - \hat{\mu}_2 = \overline{X}_1 - \overline{X}_2 = 10.5 - 10 = 0.5$$

2. Find the pooled standard deviation estimator Sp :

$$S_{p}^{2} = \frac{S_{1}^{2}(n_{1} - 1) + S_{2}^{2}(n_{2} - 1)}{n_{1} + n_{2} - 2} = \frac{4(11) + 5(13)}{24} = 4.54 \implies \boxed{Sp = 2.13}$$

3. The upper limit of 95% confidence interval for $(\mu_1 - \mu_2)$ is:

$$95\% \to \alpha = 0.05 \to t_{1-\frac{\alpha}{2},n_1+n_2-2} = t_{0.975,24} = 2.064,$$
$$(\overline{X}_1 - \overline{X}_2) + \left(t_{1-\frac{\alpha}{2},n_1+n_2-2} \times Sp\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\right)$$
$$(0.5) + \left(2.064 \times 2.13\sqrt{\frac{1}{12} + \frac{1}{14}}\right) = 2.23$$

4. The lower limit of 95% confidence interval for $(\mu_1 - \mu_2)$ is:

$$(\overline{X}_{1} - \overline{X}_{2}) - \left(t_{1 - \frac{\alpha}{2}, n_{1} + n_{2} - 2} \times \operatorname{Sp}\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}\right)$$

(0.5) - $\left(2.064 \times 2.13\sqrt{\frac{1}{12} + \frac{1}{14}}\right) = -1.23$

Question 7:

A researcher was interested in comparing the mean score of female students μ_1 , with the mean score of male students μ_2 in a certain test. Assume the populations of score are normal with equal variances. Two independent samples gave the following results:

	Female	Male
Sample size	n ₁ = 5	n ₂ = 7
Mean	$\bar{X}_1 = 82.63$	$\bar{X}_2 = 80.04$
Variance	$S_1^2 = 15.05$	$S_2^2 = 20.79$

1. The point estimate of $\mu_1 - \mu_2$ is:

A 2.63 B -2.37 C 2.59 D 0.59	0.59
------------------------------	------

2. The estimate of the pooled variance S_p^2 is:

А	17.994	В	18.494	С	17.794	D	18.094
---	--------	---	--------	---	--------	---	--------

3. The upper limit of the 95% confidence interval for $\mu_1-\mu_2\,$ is :

A 26.717 B 7.525 C 7.153 D 8.2	Α	26.717	В	7.525	С	7.153	D	8.2
--------------------------------	---	--------	---	-------	---	-------	---	-----

4. The lower limit of the 95% confidence interval for $\mu_1-\mu_2\,$ is :

А	-21.54	В	-2.345	С	-3.02	D	-1.973
---	--------	---	--------	---	-------	---	--------

Estimation and Confidence Interval: Single Proportion

For large sample size $(n \ge 30, np > 5, nq > 5)$

* Point estimate for P is:
$$\frac{x}{n}$$

* Interval estimate for P is: $\hat{p} \pm \left(Z_{1-\frac{\alpha}{2}} \times \sqrt{\frac{\hat{p}\hat{q}}{n}}\right)$

Question 7:

A random sample of 200 students from a certain school showed that 15 student smoke. Let p be the proportion of smokers in the school.

1. Find a point estimate for p.

$$n = 200 \& x = 15$$

$$\hat{p} = \frac{x}{n} = \frac{15}{200} = 0.075 \rightarrow \ \hat{q} = 0.925$$

2. Find 95% confidence interval for p.

$$95\% \to \alpha = 0.05 \to Z_{1-\frac{\alpha}{2}} = Z_{0.975} = 1.96$$
$$\hat{p} \pm \left(Z_{1-\frac{\alpha}{2}} \times \sqrt{\frac{\hat{p}\hat{q}}{n}} \right) = 0.075 \pm \left(1.96 \times \sqrt{\frac{0.075 \times 0.925}{200}} \right)$$

The 95% confidence interval is: (0.038, 0.112)

Question 8:

A researcher's group has perfected a new treatment of a disease which they claim is very efficient. As evidence, they say that they have used the new treatment on 50 patients with the disease and cured 25 of them. To calculate a 95% confidence interval for the proportion of the cured.

1.	The point estimate	e of j	p is equal to:					
Α	0.25	В	0.50	C	0.01	D	0.33	
2. The reliability coefficient $\left(z_{1-\frac{\alpha}{2}}\right)$ is equal is:								
2.	The reliability coe	effici	tent $\left(z_{1-\frac{\alpha}{2}}\right)$ is equation	al is:				
2. A	The reliability coe	effici B	ent $\left(z_{1-\frac{\alpha}{2}}\right)$ is equal 1.645	al is: C	2.02	D	1.35	

3. The 95% confidence interval is equal to:

А	(0.1114,0.3886)	В	(0.3837,0.6163)	С	(0.1614,0.6386)	D	(0.3614,0.6386)

Estimation and Confidence Interval: Two Proportions

For large sample size $(n_1 \ge 30, n_1p_1 > 5, n_1q_1 > 5)$ $(n_2 \ge 30, n_2p_2 > 5, n_2q_2 > 5)$ * Point estimate for $P_1 - P_2 = \hat{p}_1 - \hat{p}_2 = \frac{x_1}{n_1} - \frac{x_2}{n_2}$ * Interval estimate for $P_1 - P_2$ is: $(\hat{p}_1 - \hat{p}_2) \pm \left(Z_{1-\frac{\alpha}{2}} \times \sqrt{\frac{\hat{p}_1\hat{q}_1}{n_1} + \frac{\hat{p}_2\hat{q}_2}{n_2}}\right)$

Question 9:

A random sample of 100 students from school "A" showed that 15 students smoke. Another independent random sample of 200students from school "B" showed that 20 students smoke. Let p_1 be the proportion of smoker in school "A" and let p_2 be the proportion of smoker in school "B".

1. Find a point estimate for
$$P_1 - P_2$$
.

$$n_{1} = 100, x_{1} = 15 \implies \hat{p}_{1} = \frac{15}{100} = \boxed{0.15} \implies \hat{q}_{1} = 1 - 0.15 = \boxed{0.85}$$
$$n_{2} = 200, x_{2} = 20 \implies \hat{p}_{2} = \frac{20}{200} = \boxed{0.10} \implies \hat{q}_{2} = 1 - 0.10 = \boxed{0.90}$$
$$\boxed{\hat{p}_{1} - \hat{p}_{2} = 0.15 - 0.1 = 0.05}$$

2. Find 95% confidence interval for $P_1 - P_2$.

$$95\% \to \alpha = 0.05 \to Z_{1-\frac{\alpha}{2}} = Z_{0.975} = 1.96$$
$$(\hat{p}_1 - \hat{p}_2) \pm \left(Z_{1-\frac{\alpha}{2}} \times \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}} \right)$$
$$= (0.05) \pm \left(1.96 \times \sqrt{\frac{(0.15)(0.85)}{100} + \frac{(0.1)(0.9)}{200}} \right)$$
$$= 0.05 \pm \left(1.96 \times \sqrt{0.001725} \right)$$

The 95% confidence interval is: (-0.031, 0.131)

Question 10:

a first sample of 100 store customers, 43 used a MasterCard. In a second sample of 100 store customers, 58 used a Visa card. To find the 95% confidence interval for difference in the proportion $(P_1 - P_2)$ of people who use each type of credit card?

1. The value of α is:

A 0.95 B 0.50 C 0.05 D 0.025	
------------------------------	--

2. The upper limit of 95% confidence interval for the proportion difference is:

$\begin{array}{l} n_1 = 100 \ , \ x_1 = 43 \ \rightarrow \ \hat{p}_1 = \frac{43}{100} = \boxed{0.43} \ \Rightarrow \hat{q}_1 = 1 - 0.43 = \boxed{0.57} \\ n_2 = 100 \ , \ x_2 = 58 \ \rightarrow \ \hat{p}_2 = \frac{58}{100} = \boxed{0.58} \ \Rightarrow \hat{q}_2 = 1 - 0.58 = \boxed{0.42} \end{array}$
$(\hat{p}_1 - \hat{p}_2) + \left(Z_{1-\frac{\alpha}{2}} \times \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}} \right)$
$= (0.43 - 0.58) + \left(1.96 \times \sqrt{\frac{(0.43)(0.57)}{100} + \frac{(0.58)(0.42)}{100}}\right) = -0.013$

3. The lower limit of 95% confidence interval for the proportion difference is:

$$(\hat{p}_1 - \hat{p}_2) - \left(Z_{1 - \frac{\alpha}{2}} \times \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}} \right)$$
$$= (0.43 - 0.58) - \left(1.96 \times \sqrt{\frac{(0.43)(0.57)}{100} + \frac{(0.58)(0.42)}{100}} \right) = -0.287$$

Question from previous midterms and finals:

In procedure of construction (1 – α)100% confidence interval for the population mean (μ) of a normal population with a known standard deviation (σ) based on a random sample of size n.

1. '	The width of $(1 -$	- α)1	00% confidence	inte	rval for (μ) is:					
A	$2 Z_{1-\alpha} \frac{\sigma^2}{n}$	В	$2 Z_{1-\alpha} \frac{\sigma}{\sqrt{n}}$	С	$2 Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$	D	$2 Z_{1-\alpha} \frac{\sigma^2}{\sqrt{n}}$			
2.	For $n = 70$ and σ	= 4	the width of a 95	5% c	confidence interval	l for	(μ) is:			
А	3.1458	В	1.5153	С	6.1601	D	1.8741			
3.	3. For $\overline{X} = 60$ and a 95% confidence interval for μ is (57, k), then the value of the upper confidence limit k is:									
Α	64.5	В	66	С	61.5	D	63			

4. When comparing the width of the 95% confidence interval (C.I.) for μ with that of 90% C.I., we found that:

95% C.I. is	В	95% C.I. is	С	They have the	D	We can't decide
shorter		wider		same width		

5. When the sample size n increase, the width of the C.I. will:

	А	Decrease	В	Increase	С	Not be change	D	We can't decide
--	---	----------	---	----------	---	---------------	---	-----------------

6. The most typical form of a calculated confidence interval is:

Α	Point estimate \pm standard error
В	Population parameter \pm margin of error
С	Population parameter \pm standard error
D	Point estimate \pm margin of error

7. Confidence intervals are useful when trying to estimate parameter:

A Sample B Statistics C Population D None of these
--

8. The following C.I. is obtained for a population proportion (0.505,0.545), then the margin of error equals (let $\hat{p} = 0.525$)

Α	0.01	В	0.04	С	0.03	D	0.02

Chapter 7 Hypotheses Testing

$(lf \sigma known)$:			
Hypothesis Null H_0 Alternative (Research) H_A	$H_0: \mu = \mu_o$ $H_A: \mu \neq \mu_o$	$ \begin{aligned} H_0: \mu &\leq \mu_o \\ H_A: \mu &> \mu_o \end{aligned} $	$ \begin{aligned} H_0: \mu \geq \mu_o \\ H_A: \mu < \mu_o \end{aligned} $
Test Statistics (TS)		$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$	
Rejection Region (RR) of H ₀ Acceptance Region (AR) of H ₀	$\begin{array}{c c} RR \text{ of } H_0 \\ \alpha/2 \\ \hline -Z_{1-\frac{\alpha}{2}} \\ \hline Z_{1-\frac{\alpha}{2}} \\ \end{array} \\ \hline Z_{1-\frac{\alpha}{2}} \\ \hline Z_{1-\frac{\alpha}$	$AR of H_0$ $1-\alpha$ $RR of H_0$ α $Z_{1-\alpha}$	$\frac{RR of H_0}{\alpha} - Z_{1-\alpha}$
	We reje	ct H_0 at the significance	level α if
Decision	$Z < -Z_{1-(\alpha/2)}$ or $Z > Z_{1-(\alpha/2)}$	$Z > Z_{1-\alpha}$	$Z < -Z_{1-\alpha}$
	Two sides test	One side test	One side test

Hypotheses Testing

<u>**1-Single Mean**</u> (*if* σ known):

(if σ unknown):

Hypothesis Null H_0 Alternative (Research) H_A	$H_0: \mu = \mu_o$ $H_A: \mu \neq \mu_o$	$H_0: \mu \le \mu_o$ $H_A: \mu > \mu_o$	$H_0: \mu \ge \mu_o$ $H_A: \mu < \mu_o$			
Test Statistics (TS)	$t = \frac{\bar{X} - \mu_0}{S/\sqrt{n}} \sim t_{n-1}$					
Rejection Region (RR) of H ₀ Acceptance Region (AR) of H ₀	$ \begin{array}{c c} RR of H_0 \\ \alpha/2 \\ -t_1 - \alpha \\ \hline & t_1 - \alpha \\ \hline & t_1 - \alpha \\ \hline & t_1 - \alpha \\ \hline \end{array} $ RR of H_0 RR of H_0 $\alpha/2 \\ \hline & \alpha/2 \\ $	$ \begin{array}{c} $	$RR of H_0 \qquad AR of H_0 \\ 1-\alpha \qquad -t_{1-\alpha}$			
	We rejec	ct H_0 at the significance \mathbb{I}	level α if			
Decision	$t < -t_{1-(\alpha/2)}$ or $t > t_{1-(\alpha/2)}$	$t > t_{1-\alpha}$	$t < -t_{1-\alpha}$			
	Two sides test	One side test	One side test			

Question 1:

Suppose that we are interested in estimating the true average time in seconds it takes an adult to open a new type of tamper-resistant aspirin bottle. It is known that the population standard deviation is $\sigma = 5.71$ seconds. A random sample of 40 adults gave a mean of 20.6 seconds. Let μ be the population mean, then, to test if the mean μ is 21 seconds at level of significant 0.05 $(H_0: \mu = 21 \text{ vs } H_A: \mu \neq 21)$ then:

(1) The value of the test statistic is:

Question 2:

If the hemoglobin level of pregnant women (|ac| a = |ac|) is normally distributed, and if the mean and standard deviation of a sample of 25 pregnant women were $\overline{X} = 13$ (g/dl),s = 2 (g/dl). Using $\alpha = 0.05$, to test if the average hemoglobin level for the pregnant women is greater than 10 (g/dl) [H₀: $\mu \le 10$, H_A: $\mu > 10$].

$$s=2$$
 , $n=25$, $\overline{X}=13$

1. The test statistic is:

А	$Z = \frac{\bar{X} - 10}{\sigma / \sqrt{n}}$	В	$Z = \frac{\bar{X} - 10}{S/\sqrt{n}}$	C	$t = \frac{\bar{X}-10}{\sigma/\sqrt{n}}$	D	$t = \frac{\bar{X} - 10}{S / \sqrt{n}}$
	3/ 1.0		8/ 110		0/ 1.0		5/ 1.0

2. The value of the test statistic is:

A	Z < -1.645	В	Z > 1.645	C	t < -1./11	D	

4. The decision is:

А	Reject H ₀
В	Do not reject (Accept) H ₀ .
С	Accept both H_0 and H_A .
D	Reject both H_0 and H_A .

<u>2-Two Means:</u> (*if* σ_1 *and* σ_2 *known*):

$(1) 0_1 unu 0_2 know$	/n).					
<i>Hypothesis</i>	$H_0: \mu_1 - \mu_2 = d$	$H_0: \mu_1 - \mu_2 \le d$	$H_0: \mu_1 - \mu_2 \ge d$			
Alternative (Research) H_A	$H_A: \mu_1 - \mu_2 \neq d$	$H_A: \mu_1 - \mu_2 > d$	$H_A: \mu_1 - \mu_2 < d$			
Test Statistics (TS)	$Z = \frac{(\bar{X}_1 - \bar{X}_2) - d}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$					
Rejection Region (RR) of H ₀ Acceptance Region (AR) of H ₀	$\frac{RR \text{ of } H_0}{\alpha/2} - Z_{1-\frac{\alpha}{2}} \qquad Z_{1-\frac{\alpha}{2}}$	$ \begin{array}{c} $	$\frac{RR of H_0}{\alpha} - Z_{1-\alpha}$			
	We rejec	ct H_0 at the significance	level α if			
Decision	$Z < -Z_{1-(\alpha/2)}$ or $Z > Z_{1-(\alpha/2)}$	$Z > Z_{1-\alpha}$	$Z < -Z_{1-\alpha}$			
	Two sides test	One side test	One side test			
(if σ_1 and σ_2 unkn	own):	-				
Hypothesis Null H ₀ Alternative (Research) H _A	$H_0: \mu_1 - \mu_2 = d$ $H_A: \mu_1 - \mu_2 \neq d$	$ \begin{array}{l} H_0: \mu_1 - \mu_2 \leq d \\ H_A: \mu_1 - \mu_2 > d \end{array} $	$ \begin{array}{l} H_0: \mu_1 - \mu_2 \geq d \\ H_A: \mu_1 - \mu_2 < d \end{array} $			
Test Statistics (TS)	$t = \frac{(\bar{x}_1 - \frac{1}{\sqrt{s_1 - \frac{1}{s_1 - $	$\frac{\bar{X}_2) - d}{\frac{p}{p} + \frac{s_p^2}{n_2}} = \frac{(\bar{X}_1 - \bar{X}_2) - d}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$	$ - t_{n_1+n_2-2} $			
Rejection Region (RR) of H ₀ Acceptance Region (AR) of H ₀	$ \begin{array}{c} RR of H_{0} \\ \alpha/2 \\ -t_{1-\alpha} \\ \hline \end{array} \\ \begin{array}{c} RR of H_{0} \\ \alpha/2 \\ \hline \end{array} \\ \begin{array}{c} RR of H_{0} \\ \alpha/2 \\ \hline \end{array} \\ \begin{array}{c} RR of H_{0} \\ \alpha/2 \\ \hline \end{array} \\ \begin{array}{c} RR of H_{0} \\ \alpha/2 \\ \hline \end{array} \\ \begin{array}{c} RR of H_{0} \\ \alpha/2 \\ \hline \end{array} \\ \begin{array}{c} RR of H_{0} \\ \alpha/2 \\ \hline \end{array} \\ \begin{array}{c} RR of H_{0} \\ \alpha/2 \\ \hline \end{array} \\ \begin{array}{c} RR of H_{0} \\ \alpha/2 \\ \hline \end{array} \\ \begin{array}{c} RR of H_{0} \\ \alpha/2 \\ \hline \end{array} $	$ \begin{array}{c} $	$RR of H_0 AR of H_0 1-\alpha$			
	We reje	ect H_0 at the significance	level α if			
Decision	$t < -t_{1-(\alpha/2)}$ or $t > t_{1-(\alpha/2)}$ Two sides test	$t > t_{1-\alpha}$	$t < -t_{1-\alpha}$			
	$\mathbf{c}^2 - \frac{s_1^2}{s_1^2}$	$(n_1-1)+S_2^2(n_2-1)$	one succesi			
$S_p^z = \frac{1}{n_1 + n_2 - 2}$						

Question 3:

A standardized chemistry test was given to 50 girls and 75 boys. The girls made an average of 84, while the boys made an average grade of 82. Assume the <u>population</u> standard deviations are 6 and 8 for girls and boys respectively. To test the null hypothesis

 $H_0: \mu_1 - \mu_2 \le 0 \text{ vs } H_A: \mu_1 - \mu_2 > 0 \text{ use } \alpha = 0.05$

(1) The standard error of $(\overline{X}_1 - \overline{X}_2)$ is:

girls:
$$n_1 = 50$$
, $\bar{X}_1 = 84$, $\sigma_1 = 6$
boys: $n_2 = 75$, $\bar{X}_2 = 82$, $\sigma_2 = 8$
 $S.E(\bar{X}_1 - \bar{X}_2) = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} = \sqrt{\frac{6^2}{50} + \frac{8^2}{75}} = 1.2543$

(2) The value of the test statistic is:

(3) The rejection region (RR) of H_0 is:

$$Z_{1-\alpha} = Z_{1-0.05} = Z_{0.95} = 1.645$$

Α	(1.645,∞)	В	(−∞, −1.645)	С	(1.96,∞)	D	(−∞,−1.96)
---	-----------	---	--------------	---	----------	---	------------

(4) The decision is:

Α	Reject H ₀
В	Do not reject (Accept) H ₀ .
С	Accept both H_0 and H_A .
D	Reject both H_0 and H_A .

P - value = P(Z > 1.59) = 1 - P(Z < 1.59) = 0.056 > 0.05

Question 4:

Cortisol level determinations were made on two samples of women at childbirth. Group 1 subjects underwent emergency cesarean section (عملية قيصرية) following induced labor. Group 2 subjects natural childbirth route following spontaneous labor (الولادة الطبيعية). The random sample sizes, mean cortisol levels, and standard deviations were ($n_1 = 40, \bar{x}_1 = 575, \sigma_1 = 70$), ($n_2 = 44, \bar{x}_2 = 610, \sigma_2 = 80$).

If we are interested to test if the mean Cortisol level of group 1 (μ_1) is less than that of group 2 (μ_2) at level 0.05 (orH₀: $\mu_1 \ge \mu_2$ vs H₁: $\mu_1 < \mu_2$), then:

(1) The value of the test statistic is:

P - value = P(Z < -2.138) = 0.01618 < 0.05

Question 5:

An experiment was conducted to compare time length (duration time in minutes) of two types of surgeries (A) and (B). 10 surgeries of type (A) and 8 surgeries of type (B) were performed. The data for both samples is shown below.

Surgery type	А	В
Sample size	10	8
Sample mean	14.2	12.8
Sample standard deviation	1.6	2.5

Assume that the two random samples were independently selected from two normal populations with equal variances. If μ_A and μ_B are the population means of the time length of surgeries of type (A) and type (B), then, to test if μ_A is greater than μ_B at level of significant 0.05 (H₀: $\mu_A \le \mu_B$ vs H_A: $\mu_A > \mu_B$) then:

1. The value of the test statistic is:

3. The decision is:

Α	Reject H ₀	В	Accept H ₀	С	No decision	D	None of these
---	-----------------------	---	-----------------------	---	-------------	---	---------------

Question 6:

A researcher was interested in comparing the mean score of female students μ_1 , with the mean score of male students μ_2 in a certain test. Assume the populations of score are normal with equal variances. Two independent samples gave the following results:

	Female	Male
Sample size	n ₁ = 5	n ₂ = 7
Mean	$\bar{X}_1 = 82.63$	$\bar{X}_2 = 80.04$
Variance	$S_1^2 = 15.05$	$S_2^2 = 20.79$

Test that is there is a difference between the mean score of female students and the mean score of male students.

1. The hypotheses are:

A	$ \begin{aligned} H_0: \mu_1 &= \mu_2 \\ H_A: \mu_1 \neq \mu_2 \end{aligned} $	В	$H_0: \mu_1 = \mu_2$ $H_A: \mu_1 < \mu_2$	C	$H_0: \mu_1 < \mu_2$ $H_A: \mu_1 > \mu_2$	D	$H_0: \mu_1 \le \mu_2$ $H_A: \mu_1 > \mu_2$
---	--	---	--	---	--	---	--

2. The value of the test statistic is:

	S_p^2	$=\frac{S_{1}^{2}}{2}$	$\frac{(n_1-1)+S_2^2(n_2-1)}{n_1+n_2-2} =$	15.0	$\frac{5(4)+20.79(6)}{5+7-2} =$	= 18	.494	
		i	$t = \frac{(\bar{x}_1 - \bar{x}_2)}{Sp\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{82}{\sqrt{12}}$	2.63-	$\frac{80.04}{4\sqrt{\frac{1}{5}+\frac{1}{7}}} = 1.029$)		
Α	1.3	В	1.029	С	0.46		D	0.93
3.	The acceptance r	regio	n (AR) of H_0 is:				0	

А	(2.228,∞)	В	(−∞, −2.228)	С	(-2.228, 2.228)	D	(-1.96, 1.96)
---	-----------	---	--------------	---	-----------------	---	---------------

Question 7:

A nurse researcher wished to know if graduates of baccalaureate (بكالوريس) nursing program and graduate of associate degree (الزمالة) nursing program differ with respect to mean scores on personality inventory at $\alpha = 0.02$. A sample of 50 associate degree graduates (sample A) and a sample of 60 baccalaureate graduates (sample B) yielded the following means and standard deviations:

$$\bar{X}_A = 88.12, S_A = 10.5, n_A = 50$$

 $\bar{X}_B = 83.25, S_B = 11.2, n_B = 60$

1) The hypothesis is:

A	$\begin{array}{l} H_0: \mu_1 = \mu_2 \\ H_A: \mu_1 \neq \mu_2 \end{array}$	В	$H_0: \mu_1 \le \mu_2$ $H_A: \mu_1 > \mu_2$	C	$H_0: \mu_1 \ge \mu_2 \\ H_A: \mu_1 < \mu_2$	D	None of these

2)	The test statistic	is:					
Α	Z	В	t	С	F	D	None of these

3) The computed value of the test statistic is:

$$S_p^2 = \frac{S_1^2(n_1-1) + S_2^2(n_2-1)}{n_1+n_2-2} = \frac{10.5^2(50-1) + 11.2^2(60-1)}{50+60-2} = 118.55$$

$$t = \frac{(\bar{X}_1 - \bar{X}_2)}{Sp\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{88.12 - 83.25}{\sqrt{118.55}\sqrt{\frac{1}{50} + \frac{1}{60}}} = \boxed{2.34}$$

4) The critical region (rejection area) is:

$$t_{1-\frac{\alpha}{2},n_1+n_2-2} = t_{1-\frac{0.02}{2}, 50+60-2} = t_{0.99,108} = 2.36$$

-2.36

2.36

5) Your decision is:

А	Reject H ₀	В	Accept H ₀	С	Accept H _A	D	No decision
---	-----------------------	---	-----------------------	---	-----------------------	---	-------------

<u>3- Single proportion:</u>

Hypothesis Null H_0	$H_0: p = p_o$ $H_A: p \neq p_o$	$H_0: p \le p_o$ $H_4: p > p_o$	$\begin{array}{c} H_0: p \ge p_o \\ H_A: p < p_c \end{array}$				
Test Statistics (TS)	ATTO	$Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 q_0}{n}}} \sim N(0, 1)$)				
Rejection Region (RR) of H ₀ Acceptance Region (AR) of H ₀	$ \begin{array}{c c} RR of H_0 & AR of H_0 \\ \hline \alpha/2 & 1-\alpha \\ \hline - Z_{1-\frac{\alpha}{2}} & Z_{1-\frac{\alpha}{2}} \end{array} $	$ \begin{array}{c} $	$\frac{RR of H_0}{\alpha} - Z_{1-\alpha}$				
	We reject H_0 at the significance level α if						
Decision	$Z < -Z_{1-(\alpha/2)}$ or $Z > Z_{1-(\alpha/2)}$	$Z > Z_{1-\alpha}$	$Z < -Z_{1-\alpha}$				
	Two sides test	One side test	One side test				

Question 8:

Toothpaste (معجون الأسنان) company claims that more than 75% of the dentists recommend their product to the patients. Suppose that 161 out of 200 dental patients reported receiving a recommendation for this toothpaste from their dentist. Do you suspect that the proportion is actually morethan 75%. If we use 0.05 level of significance to test H_0 : $P \leq 0.75$, H_A : P > 0.75, then:

(1) The sample proportion \hat{p} is:

$$n = 200, \ \hat{p} = \frac{161}{200} = 0.8050$$

(2) The value of the test statistic is:

$$Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 q_0}{n}}} = \frac{0.805 - 0.75}{\sqrt{\frac{(0.75)(0.25)}{200}}} = \boxed{1.7963}$$
(3) The decision is:

$$\alpha = 0.05$$

$$Z_{1-\alpha} = Z_{0.95} = 1.645$$

$$1.645$$

А	Reject H_0 (agree with the claim)
В	Do not reject (Accept) H ₀
С	Accept both H_0 and H_A
D	Reject both H_0 and H_A

P - value = P(Z > 1.7963) = 1 - P(Z < 1.7963) = 1 - 0.96407 = 0.03593 < 0.05

Question 9:

A researcher was interested in studying the obesity (السمنة) disease in a certain population. A random sample of 400 people was taken from this population. It was found that 152 people in this sample have the obesity disease. If p is the population proportion of people who are obese. Then, to test if p is greater than 0.34 at level 0.05 (H_0 : $p \le 0.34$ vs H_A : p > 0.34) then:

(1) The value of the test statistic is:

$$n = 400, \quad \hat{p} = \frac{152}{400} = 0.38$$

$$Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 q_0}{n}}} = \frac{0.38 - 0.34}{\sqrt{\frac{0.34 \times 0.66}{400}}} = \boxed{1.69}$$

Α	0.023	В	1.96	С	2.50	D	1.69
-							

(2) The P-value is

$$P - value = P(Z > 1.69) = 1 - P(Z < 1.69) = 1 - 0.9545 = 0.0455$$

	А	0.9545	В	0.0910	С	0.0455	D	1.909
--	---	--------	---	--------	---	--------	---	-------

(3) The decision is:

P - value = 0.0455 < 0.05

А	Reject H ₀	В	Accept H ₀	С	No decision	D	None of these
---	-----------------------	---	-----------------------	---	-------------	---	---------------

<u>4-Two proportions:</u>

Hypothesis Null H_0 Alternative (Research) H_A	$H_0: p_1 - p_2 = d$ $H_A: p_1 - p_2 \neq d$	$ \begin{array}{l} H_0: p_1 - p_2 \leq d \\ H_A: p_1 - p_2 > d \end{array} $	$ \begin{array}{l} H_0: p_1 - p_2 \geq d \\ H_A: p_1 - p_2 < d \end{array} $
Test Statistics (TS)	$Z = \frac{(\hat{p}_1 - \hat{p}_2)}{\sqrt{\frac{\bar{p}\bar{q}}{n_1} + \frac{\bar{p}\bar{q}}{n_1} + \frac{\bar{p}\bar{q}\bar{q}}{n_1} + \frac{\bar{p}\bar{q}\bar{q}\bar{q}}{n_1} + \frac{\bar{p}\bar{q}\bar{q}}{n_1} + \frac{\bar{p}\bar{q}\bar{q}}{n_1} + \frac{\bar{p}\bar{q}\bar{q}}{n_1} + \frac{\bar{p}\bar{q}\bar{q}\bar{q}}{n_1} + \frac{\bar{p}\bar{q}\bar{q}\bar{q}}{n_1} + \frac{\bar{p}\bar{q}\bar{q}\bar{q}}{n_1} + \frac{\bar{p}\bar{q}\bar{q}\bar{q}}{n_1} + \frac{\bar{p}\bar{q}\bar{q}\bar{q}}{n_1} + \frac{\bar{p}\bar{q}\bar{q}\bar{q}}{n_1} + \frac{\bar{p}\bar{q}\bar{q}\bar{q}\bar{q}}{n_1} + \frac{\bar{p}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}}{n_1} + \frac{\bar{p}\bar{q}\bar{q}\bar{q}\bar{q}}{n_1} + \frac{\bar{p}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}}{n_1} + \frac{\bar{p}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}}{n_1} + \frac{\bar{p}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}}{n_1} + \frac{\bar{p}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}}{n_1} + \frac{\bar{p}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}}{n_1} + \frac{\bar{p}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}}{n_1} + \frac{\bar{p}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}}{n_1} + \frac{\bar{p}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}q$	~ <i>N</i> (0,1)	
Rejection Region (RR) of H ₀ Acceptance Region (AR) of H ₀	$ \begin{array}{c c} RR of H_0 & AR of H_0 \\ \hline \alpha/2 & & & \\ - Z_{1-\frac{\alpha}{2}} & Z_{1-\frac{\alpha}{2}} \end{array} $	$AR of H_0$ $1-\alpha$ $RR of H_0$ α $Z_{1-\alpha}$	$\frac{RR of H_0}{\alpha} - Z_{1-\alpha}$
	We reject <i>I</i>	e level α if	
Decision	$Z < -Z_{1-(\alpha/2)}$ or $Z > Z_{1-(\alpha/2)}$	$Z > Z_{1-\alpha}$	$Z < -Z_{1-\alpha}$
	Two sides test	One side test	One side test

Question 10:

In a first sample of 200 men, 130 said they used seat belts and a second sample of 300 women, 150 said they used seat belts. To test the claim that men are more safety-conscious than women $(H_0: p_1 - p_2 \le 0, H_1: p_1 - p_2 > 0)$, at 0.05 level of significant:

(1) The value of the test statistic is:

$$n_{1} = 200, \quad \hat{p}_{1} = \frac{130}{200} = 0.65 \qquad n_{2} = 300, \quad \hat{p}_{2} = \frac{150}{300} = 0.5$$

$$\bar{p} = \frac{x_{1} + x_{2}}{n_{1} + n_{2}} = \frac{130 + 150}{200 + 300} = 0.56$$

$$Z = \frac{(\hat{p}_{1} - \hat{p}_{2})}{\sqrt{\bar{p}\bar{q}}(\frac{1}{n_{1}} + \frac{1}{n_{2}})} = \frac{(0.65 - 0.5)}{\sqrt{(0.56)(0.44)(\frac{1}{200} + \frac{1}{300})}} = \boxed{3.31}$$
(2) The decision is:
$$Z_{1-\alpha} = Z_{1-0.05} = Z_{0.95} = 1.645$$

Α	Reject H ₀
В	Do not reject (Accept) H ₀
С	Accept both H_0 and H_A
D	Reject both H_0 and H_A

P - value = P(Z > 3.31) = 1 - P(Z < 3.31) = 1 - 0.99953 = 0.00047 < 0.05

Question 11:

In a study of diabetes, the following results were obtained from samples of males and females between the ages of 20 and 75. Male sample size is 300 of whom 129 are diabetes patients, and female sample size is 200 of whom 50 are diabetes patients. If P_M , P_F are the diabetes proportions in both populations and \hat{p}_M , \hat{p}_F are the sample proportions, then:

A researcher claims that the Proportion of diabetes patients is found to be more in males than in female (H_0 : $P_M - P_F \le 0$ vs H_A : $P_M - P_F > 0$). Do you agree with his claim, take $\alpha = 0.10$

$$n_m = 300$$
 , $x_m = 129 \implies \hat{p}_1 = \frac{129}{300} = 0.43$
 $n_f = 200$, $x_f = 50 \implies \hat{p}_2 = \frac{50}{200} = 0.25$

(1) The pooled proportion is:

$$\bar{p} = \frac{x_m + x_f}{n_m + n_f} = \frac{129 + 50}{300 + 200} = 0.358$$

A 0.43 B 0.18 C 0.358 D 0.68

(2) The value of the test statistic is:

$$Z = \frac{(\hat{p}_1 - \hat{p}_2)}{\sqrt{p\bar{q}}(\frac{1}{n_1} + \frac{1}{n_2})} = \frac{(0.43 - 0.25)}{\sqrt{(0.358)(1 - 0.358)(\frac{1}{300} + \frac{1}{200})}} = \boxed{4.11}$$

(3) The decision is:
$$Z_{1-\alpha} = Z_{1-0.10} = Z_{0.90} = 1.285$$

А	Agree with the claim (Reject H_0)
В	do not agree with the claim
С	Can't say

$$P - value = P(Z > 4.11) = 1 - P(Z < 4.11) = 1 - 1 = 0 < 0.05$$

• P-value:

Hypothesis	$H_0: \mu = \mu_o$ $H_A: \mu \neq \mu_o$	$ \begin{aligned} H_0: \mu &\leq \mu_o \\ H_A: \mu &> \mu_o \end{aligned} $	$H_0: \mu \ge \mu_o$ $H_A: \mu < \mu_o$
RR			
P-value	$2 \times P(Z > TS)$	P(Z > TS)	P(Z < TS)
		$2 \times P(Z > TS)$ If TS > 0	$2 \times P(Z < TS)$ If TS < 0

	population normal n large (n	or not normal ≥ 30)	population normal n small (n < 30)		
	σ known	σ unknown	σ known	σ unknown	
Testing	$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$	$Z = \frac{\overline{X} - \mu_0}{s/\sqrt{n}}$	$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$	$T = \frac{\overline{X} - \mu_0}{s/\sqrt{n}}$	

• Two Samples Test for Paired Observation

Question 1:

The following contains the calcium levels of eleven test subjects at zero hours and three hours after taking a multi-vitamin containing calcium.

Pair	0 hour (X_i)	3 hours (Y_i)	Difference $D_i = X_i - Y_i$
1	17.0	17.0	0.0
2	13.2	12.9	0.3
3	35.3	35.4	-0.1
4	13.6	13.2	0.4
5	32.7	32.5	0.2
6	18.4	18.1	0.3
7	22.5	22.5	0.0
8	26.8	26.7	0.1
9	15.1	15.0	0.1

The sample mean and sample standard deviation of the differences D are 0.144 and 0.167, respectively. To test whether the data provide sufficient evidence to indicate a difference in mean calcium levels (H₀: $\mu_1 = \mu_2$ againstH₁: $\mu_1 \neq \mu_2$) with $\alpha = 0.10$ we have: $\overline{D} = 0.144$, S_d = 0.167, n = 9

[1]. The reliability coefficient (the tabulated value) is:

$$t_{1-\frac{\alpha}{2},n-1} = t_{1-\frac{0.1}{2},9-1} = t_{0.95,8} = 1.860$$

[2]. The value of the test statistic is:

$$\begin{array}{c} H_0: \mu_1 = \mu_2 \\ H_1: \mu_1 \neq \mu_2 \end{array} \Longrightarrow \begin{array}{c} H_0: \mu_1 - \mu_2 = 0 \\ H_1: \mu_1 - \mu_2 \neq 0 \end{array} \Longrightarrow \begin{array}{c} H_0: \mu_D = 0 \\ H_1: \mu_D \neq 0 \end{array}$$

$$T = \frac{\overline{D} - \mu_D}{S_d / \sqrt{n}} = \frac{0.144 - 0}{0.167 / \sqrt{9}} = \boxed{2.5868}$$

[3]. The decision is:

We reject
$$H_0$$

-1.86 1.86

Question 2:

Scientists and engineers frequently wish to compare two different techniques for measuring or determining the value of a variable. Reports the accompanying data on amount of milk ingested by each of 14 randomly selected infants.

Pair	DD method (X_i)	TW method (Y_i)	Difference $D_i = X_i - Y_i$
1	1509	1498	11
2	1418	1254	164
3	1561	1336	225
4	1556	1565	-9
5	2169	2000	169
6	1760	1318	442
7	1098	1410	-312
8	1198	1129	69
9	1479	1342	137
10	1281	1124	157
11	1414	1468	-54
12	1954	1604	350
13	2174	1722	452
14	2058	1518	540

1. The sample mean of the differences \overline{D} is:

$$\overline{D} = \frac{11+164+225-9+169+442-312+\dots+540}{14} = 167.21$$
A 167.21 B 0.71 C 0.61 D 0.31

2. The sample standard deviation of the differences S_D is:

			$S_D = \sqrt{\frac{\Sigma(D_i - D_i)}{n - 1}}$	$\left(\overline{D}\right)^2$	= 228.21		
Α	3.15	В	-0.71	С	71.53	D	228.21

3. The reliability coefficient to construct 90% confidence interval for the true average difference between intake values measured by the two methods μ_D is:

The reliability coefficient =
$$t_{1-\frac{\alpha}{2},n-1} = t_{0.95,13} = 1.771$$

A 1.96 B 1.771 C 2.58 D 1.372								
	Α	1.96	В	1.771	С	2.58	D	1.372

4. The 90% lower limit for μ_D is:

$$= \overline{D} - \left(t_{1-\frac{\alpha}{2},n-1} \times \frac{S_D}{\sqrt{n}}\right)$$
$$= 167.21 - \left(1.771 \times \frac{228.12}{\sqrt{14}}\right) = 59.19$$
$$A \quad 24.92 \quad B \quad 22.55 \quad C \quad 59.19 \quad D \quad 44.96$$

5. The 90% upper limit for μ_D is:

$$= \overline{D} + \left(t_{1 - \frac{\alpha}{2}, n-1} \times \frac{S_D}{\sqrt{n}} \right)$$

$$= 167.21 + \left(1.771 \times \frac{228.12}{\sqrt{14}}\right) = 275.23$$

A 224.92 B 322.55 C 275.23 D 24.96

To test $H_0: \mu_D = 0$ versus $H_A: \mu_D \neq 0$, $\alpha = 0.10$ as a level of significance we have: 6. The value of the test statistic is:

Question 3:

In a study of a surgical procedure used to decrease the amount of food that person can eat. A sample of 10 persons measures their weights before and after one year of the surgery, we obtain the following data:

Before surgery (X)	148	154	107	119	102	137	122	140	140	117
After surgery (Y)	78	133	80	70	70	63	81	60	85	120
$D_i = X_i - Y_i$	70	21	27	49	32	74	41	80	55	-3

We assume that the data comes from normal distribution.

For 90% confidence interval for μ_D , where μ_D is the difference in the average weight before and after surgery.

1. The sample mean of the differences \overline{D} is:

$$\overline{D} = \frac{70+21+27+49+32+74+41+80+55-3}{10} = 44.6$$

2. The sample standard deviation of the differences S_D is:

$$S_{\rm D} = \sqrt{\frac{\sum (D_i - \overline{D})^2}{n-1}} = 26.2$$

3. The 90% upper limit of the confidence interval for μ_D is:

$$t_{1-\frac{\alpha}{2},n-1} = t_{0.95,9} = 1.833$$
$$= \overline{D} + \left(t_{1-\frac{\alpha}{2},n-1} \times \frac{S_D}{\sqrt{n}}\right)$$
$$= 44.6 + \left(1.833 \times \frac{26.2}{\sqrt{10}}\right) = 59.79$$

4. To test $H_0: \mu_D \ge 43$ versus $H_A: \mu_D < 43$, with $\alpha = 0.10$ as a level of significance, the value of the test statistic is:

$$T = \frac{\overline{D} - \mu_D}{S_d / \sqrt{n}} = \frac{44.6 - 43}{26.2 / \sqrt{10}} = \boxed{0.19}$$

5. The decision is:

$$-t_{1-\alpha,n-1} = -t_{0.90,9} = -1.383 \Longrightarrow 0.19 \notin RR: (-\infty, -1.383)$$

А	Reject H ₀	В	Do not reject H ₀	С	No decision	D	None of these
-							

Questions 4:

Trace metals in drinking water affect the flavor and an unusually high concentration can pose a health hazard. Ten pairs of data were taken measuring zinc concentration in bottom water and surface water. The Data is given below:

	zinc concentration in Bottom water	zinc concentration in Surface water	Difference
1	0.43	0.415	0.015
2	0.266	0.238	0.028
3	0.567	0.39	0.177
4	0.531	0.41	0.121
5	0.707	0.605	0.102
6	0.716	0.609	0.107
7	0.651	0.632	0.019
8	0.589	0.523	0.066
9	0.469	0.411	0.058
10	0.723	0.612	0.111

Note that the mean and the standard deviation of the difference are given respectively by $\overline{D} = 0.0804$ and $S_D = 0.0523$ We want to determine the 95 % confidence interval for $\mu_1 - \mu_2$, where μ_1 and μ_2 represent the true mean zinc concentration in Bottom water and surface water respectively. Assume the distribution of the differences to be approximately normal.

1. The 95% lower limit for $\mu_1 - \mu_2$ equals to:

А	0.02628	В	0.13452	С	0.04299	D	0.11781

2. The 95% upper limit for $\mu_1 - \mu_2$ equals to:

Α	0.02628	В	0.13452	С	0.04299	D	0.11781
---	---------	---	---------	---	---------	---	---------

	Estimation	Testing			
	$\bar{X} \pm Z_{1-\frac{lpha}{2}\frac{\sigma}{\sqrt{n}}}$ σ known	$Z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$ σ known			
Single mean	$\bar{X} \pm t_{1-\frac{\alpha}{2},(n-1)} \frac{S}{\sqrt{n}}$ σ unknown	$T = \frac{\bar{x} - \mu_0}{S/\sqrt{n}}$ σ unknown			
T	$(\bar{X}_1 - \bar{X}_2) \pm Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \sigma_1 \text{ and } \sigma_2 \text{ known}$	$Z = \frac{(\bar{x}_1 - \bar{x}_2) - d}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$ $\sigma_1 \text{ and } \sigma_2 \text{ known}$			
I wo means	$(\bar{X}_1 - \bar{X}_2) \pm t_{1 - \frac{\alpha}{2}, (n_1 + n_2 - 2)} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$	$T = \frac{(\bar{x}_1 - \bar{x}_2) - d}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$			
	σ_1 and σ_2 unknown	σ_1 and σ_2 unknown $z = \hat{p} - p_0$			
Single proportion	$\hat{p} \pm Z_{1-\frac{\alpha}{2}} \sqrt{\frac{pq}{n}}$	$Z = \frac{\sqrt{p_0 q_0}}{\sqrt{\frac{p_0 q_0}{n}}}$			
Two proportions	$(\hat{p}_1 - \hat{p}_2) \pm Z_{1 - \frac{\alpha}{2}} \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}}$	$Z = \frac{(\hat{p}_1 - \hat{p}_2) - d}{\sqrt{p\bar{q}(\frac{1}{n_1} + \frac{1}{n_2})}}$			

$$S_p^2 = \frac{S_1^2(n_1 - 1) + S_2^2(n_2 - 1)}{n_1 + n_2 - 2}$$

		H ₀ is true	H ₀ is false	
	Accepting H	Correct decision	Type II error	
	Accepting II ₀	\checkmark	(β)	
	Pajacting H	Type I error	Correct decision	
	Rejecting II ₀	(α)	\checkmark	
		•		★
Т	ype I error = Rejectir	H_0 when H_0 is true	Type II error = Acceptin	ag H_0 when H_0 is false
Р(Ту	pe I error) = P(Reje	ecting $H_0 H_0$ is true) = α	P(Type II error) = P(Acce	pting $H_0 H_0$ is false) = β

• Question from previous midterms and finals:

Q1. In the procedure of testing the statistical hypotheses H_0 against H_A using a significance level α

Ι.	1. The type I error occur if we:									
Α	Rejecting H ₀	В	Rejecting H ₀	C	Accepting H ₀	D	Accepting H_0			
$\frac{1}{2}$	The probability	v of	type Lerror is:		when Π_0 is the		when Π_0 is faise			
Δ	Δ β									
3	<u> </u>	mifi	cance is:	C	1 β	ν	1 u			
Δ	The probability of	of rei	iecting H _A	R	The probability	of re	iecting H _o			
Γ	C The probability of making a Type I D The probability of making a Type II									
	error D The probability of making a Type I error									
4.	When we use I	o-va	lue method, we	reje	ect H ₀ if					
Α	P- value > α	В	P- value $< \alpha$	С	P- value $<\beta$	D	P- value > β			
5.	5. If the P-value = 0.0625 and α = 0.05, the decision is:									
Α	Reject H ₀	В	Accept H ₀	С	Reject H _A	D	Accept H_A			
6. To determine the rejection region for H_0 , it depends on:										
Α	A α and H_A B H_0 C α and H_0 D β									
7. Which one is an example of two-tailed test:										
Α	$H_{A}: \mu = 0$	В	$H_A: \mu \neq 0$	С	$H_{A}: \mu < 0$	D	$H_{A}: \mu > 0$			
8.	If the P-value =	= 0.0)625 and $\alpha = 0$.	05,	the decision is:					
Α	Reject H ₀	В	Accept H ₀	C	Reject H _A	D	Accept H_A			
9.	9. If the distribution of the random sample is normal and standard deviation of									
	the population is known, which type of the interval should be considered?									
Α	z - interval	В	x - interval	C	t - interval	D	c - interval			
10	10.An appropriate 95% CI for μ has been calculated as (-1.5, 3.5) based on									
	$n_1 = 15, n_2 =$	= 17	observations	fror	n two indepen	dent	t population with			
	normal distribu	itior	n. The hypothes	es o	f interest $H_0: \mu_1$	=	$\mu_2 \text{ vs } H_A: \mu_1 \neq \mu_2$			
	Based on this C	CI ai	nd at $\alpha = 0.05$,							
Α	We show	uld 1	reject H ₀	В	We should	d no	t reject H ₀			

1. The type I error occur if we:

Q2. To compare the mean times spent waiting for a heart transplant for two age groups, you randomly select several people in each age group who have had a heart transplant. The result is shown below. Assume both population is are normally distributed <u>with equal variance</u>.

Sample statis	tics for heart tra	nsplant
Age group	18-34	35-49
Mean	171 days	169 days
Standard deviation	8.5 days	11.5 days
Sample size	20	17

Do this data provide sufficient evident to indicate a difference among the population means at $\alpha = 0.05$

1. The alternative hypothesis is:

Α	$\mathbf{H}_A: \boldsymbol{\mu}_1 \neq \boldsymbol{\mu}_2$	В	$H_A: \mu_1 \leq \mu_2$	С	$H_A: \mu_1 > \mu_2$	D	$\mathbf{H}_A: \mu_1 = \mu_2$

2. The pooled estimator of the common variance S_p^2 is:

A 9935.82 B 105.5214 C 10.4429 D 99.6786						E		
	A	9935.82	В	105.5214	С	10.4429	D	99.6786

3. The appropriate test statistics is:

A	$Z = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}}$	В	$\mathbf{Z} = \frac{\overline{\mathbf{X}}_1 - \overline{\mathbf{X}}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	C	$T = \frac{\bar{X}_{1} - \bar{X}_{2}}{\sqrt{\frac{S_{1}^{2} + S_{2}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}}}$	D	$T = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}}$
---	--	---	---	---	--	---	--

4. The 95% confidence interval for the different in mean times spent waiting for heart transplant for the two age groups:

	А	(-3.548,7.565)	В	(-0.1306,4.1306)	С	(-4.6862,8.6862)	D	(-4.8519,8.8519)
--	---	----------------	---	------------------	---	------------------	---	------------------

5. Base on the 95% C.I. in the above question, it can be concluded that:

	Α	$\overline{X}_1 = \overline{X}_2$	В	$\mu_1 \neq \mu_2$	С	$\mu_1 = \mu_2$	D	None of these
--	---	-----------------------------------	---	--------------------	---	-----------------	---	---------------