Chemical Engineering Department
 College of Engineering
 King Saud University

ChE 201 - ChE Principles I

Time $=3$ hours
Final Examination
25/11/1425 Answer ALL questions,

Question 1

Two gaseous streams are mixed together to form one output stream. The first stream flows at $120 \mathrm{~mol} / \mathrm{min}$ and contains $\mathrm{H}_{2}=40 \%, \mathrm{~N}_{2}=50 \%$ and $\mathrm{O}_{2}=10 \%$ by mole. The second stream is air (21% oxygen and 79% nitrogen by mole) and it flows at $200 \mathrm{~g} / \mathrm{s}$.
(i) Draw and label a flow chart for this process.
(ii) Calculate the molar flow rate and composition of the exit (output) stream.

Question 2

Propylene oxide is produced by the catalytic oxidation of propylene:

$$
\begin{aligned}
& 2 \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow 2 \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O} \\
& 2 \mathrm{C}_{3} \mathrm{H}_{6}+9 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

The feed to the reactor (not the fresh feed to the process) contains 3 moles of propylene per mole of oxygen. The single-pass conversion of propylene is 20%, and for every 100 moles of propylene consumed in the reactor, 90 moles of propylene oxide emerges in the reactor products. A multiple-unit process is used to separate the products: propylene and oxygen are recycled to the reactor; propylene oxide is sold as a product. and carbon dioxide and water are discarded.
Assume the reactor feed stream to be $100 \mathrm{~mole} / \mathrm{h}$ as a basis of calculation.
Calculate:
(i) the molar flow rates of propylene and oxygen in the fresh feed,
(ii) the production rate of propylene oxide.
(iii) the overall conversion of propylene.

Question 3

Consider the following flowchart

Two streams (1) and (2) are mixed to give a mixed stream (5) which is separated in another unit to give streams (3) and (4). The molar flow rate of stream (4) is $160 \mathrm{~mol} / \mathrm{s}$ and that of stream (2) is $100 \mathrm{~mol} / \mathrm{s}$. The molar percentage are : \mathbf{A} is stream (1) is $80 \%, \mathbf{C}$ in stream (4) is $12.5 \%, \mathbf{C}$ in stream (2) is $50 \%, \mathbf{D}$ in stream (4) is 6.25% and \mathbf{C} in stream (3) is 75%.

Calculate the molar flow rates and the compositions of all streams in the flow chart (Do NOT forget stream (5)).

Question 4

The following reactions take place at the same time as shown in flow chart below:

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Calculate the percentage molar composition of the products
DATA: Atomic mass
$\mathrm{C}=12 \quad \mathrm{H}=1 \quad \mathrm{O}=16 \quad \mathrm{~N}=14$

