Exercises To Introduction to Partial Differential Equations

Dr. Huda Alrashidi

October 18, 2022

1 Basic Concepts

Exercise 1

- 1. Give the order of each of the following PDEs:
 - (a) $u_{xx} + u_{yy} = 0$
 - (b) $u_{xxx} + u_{xy} + a(x)u_y + \log u = f(x, y)$
 - (c) $u_{xxx} + u_{xyyy} + a(x)u_{xxy} + u^2 = f(x, y)$
 - (d) $uu_{xx} + u_{yy}^2 + e^u = 0$
 - (e) $u_x + cu_y = d$
- 2. Which of the following PDEs is linear? quasilinear? nonlinear? If it is linear, state whether it is homogeneous or not.
 - (a) $u_{xx} + u_{yy} 2u = x^2$
 - (b) $u_{xy} = u$
 - (c) $uu_x + xu_y = 0$
 - (d) $u_x^2 + \log u = 2xy$
 - (e) $u_{xx} 2u_{xy} + u_{yy} = \cos x$
 - (f) $u_x (1+u_y) = u_{xx}$
 - (g) $(\sin u_x)u_x + u_y = e^x$
 - (h) $2u_{xx} 4u_{xy} + 2u_{yy} + 3u = 0$
 - (i) $u_x + u_x u_y u_{xy} = 0$
- 3. Eliminate the arbitrary functions to obtain a differential equation of lowest order:
 - (a) $u = e^{-x} f(x 2y)$
 - (b) u = xf(x+y) + g(x+y)

- (c) u = xf(y+cx) + yg(y+cx)
- 4. Eliminate the arbitrary constants to obtain a differential equation of lowest order:
 - (a) $u = c_1 \cos x + c_2 \sin y$
 - (b) $u = c_1(x+y) + c_2(x-y) + c_1c_2t + c_3$

5. Find the differential equation of all sphere of radius λ and having centre on xy-plane?

6. Show that

$$u = F(xy) + xG(\frac{y}{x})$$

is the general solution of

$$x^2 u_{xx} - y^2 u_{yy} = 0.$$

7. Find the general solution of

$$u_{xy} + u_y = 0.$$

(Hint:Let $v = u_y$)

2 First-Order Equations

Exercise 2:

- 1. Solve the following first-order partial differential equations:
 - (a) $u_{xx} = 6x$
 - (b) $5u_x + 4u_y + u = x^3 + 1 + 2e^{3y}$
 - (c) $5u_x + u_y = y$.
 - (d) $(y-x)u_x + (y+x)u_y = \frac{x^2+y^2}{u}$.
 - (e) $2yu_x + (3x^2 1)u_y = 0.$
 - (f) $(u^2 2yu y^2)u_x + (xy + xu)u_y = xy xu.$
 - (g) $xu_x 7yu_y = x^2y$.
 - (h) $u_x + u_y + u_z = 0.$
- 2. Find the solution of Cauchy problem:
 - (a) $y^{-1}u_x + u_y = u^2$, $u(x, 1) = x^2$.
 - (b) $xu_x + yu_y = x^2 y, \ u(1, y) = y.$
 - (c) $u_x + 3u_y = u^2$, u(x, 0) = h(x), where h(x) is a smooth function and not equal to zero.

- 3. Find the integral surface of the given differential equation which passes through the curve Γ :
 - (a) $(y+xu)u_x + (x+yu)u_y = u^2 1$, $\Gamma: x = t, y = 1, u = t^2$.
 - (b) $u_x + \sqrt{u}u_y = 0$, $\Gamma : u(x, 0) = x^2 + 1$.
 - (c) $u(u_x u_y) = y x$, $\Gamma : u(1, y) = y^2$.
 - (d) $e^u(u_x + x^2 u_y) = \frac{1}{1+x}, \quad \Gamma : x = 0, y = t, u = t.$

3 Second-Order Equations

Exercise 3:

- 1. Classify each equation. Reduce to canonical form.
 - (a) $u_{xx} + u_{xy} 6u_{yy} = 0.$
 - (b) $u_{xy} u_y = \cos y$.
 - (c) $u_{xx} 2u_{xy} + u_{yy} = 1.$
 - (d) $x^2 u_{xx} y^2 u_{yy} = (x+y)xy.$
- 2. Find the general solution of following PDEs
 - (a) $u_{yy} + u = e^{x+y}$.
 - (b) $(x-y)u_{xy} u_x + u_y = 0.$ [Hint: use v = (x-y)u].
 - (c) $u_{xx} 9u_{yy} = x^2 + \sin y + 2.$

3. Find the solution of Cauchy problem:

(a) $u_{xx} - u_{yy} = 0$ (b) $u_{xy} + u_y = y$ u(x, x) = 0, and $u_x(x, x) = 1$. $u(x, x) = x^2$, and $u_x(x, x) = 0$.

4 Sturm/Liouville Theory and Orthogonal Functions

Exercise 4:

1. Determine the coefficients a_i and b_i in the linear combination

$$a_0 + a_1 \cos x + b_1 \sin x + a_2 \cos 2x + b_2 \sin 2x$$

which give the best approximation in $\mathcal{L}^2(-\pi,\pi)$ of $f(x) = |x|, -\pi \le x \le \pi$.

2. Put the following operators in the form

$$p\frac{d^2}{dx^2} + p'\frac{d}{dx} + r,$$

where p > 0:

- (a) $x^2 \frac{d^2}{dx^2}, x > 0,$ (b) $\frac{d^2}{dx^2} - x \frac{d}{dx}, x \in \mathbb{R},$ (c) $\frac{d^2}{dx^2} - x^2 \frac{d}{dx}, x > 0.$
- 3. Put the equation $u'' + 2u' + \lambda u = 0$ in the standard form $Lu + \lambda \mu u = 0$ where the operator L is formally self-adjoint, then find the eigenvalues and eigenfunctions on [0, 1] under the boundary conditions u(0) = u(1) = 0.
- 4. Find the eigenvalues and eigenfunctions for

$$u'' + \lambda u = 0, \quad a \le x \le b,$$

 $u(a) = u(b) = 0.$

5 Laplace Equation

Exercise 5:

1. Find the solution of the following Dirichlet problem

(a)
$$u_{xx} + u_{yy} = 0$$
, $0 < x < \pi, 0 < y < 2\pi$
 $u(0, y) = u(\pi, y) = 0$, $0 < y < 2\pi$
 $u(x, 0) = 0, u(x, 2\pi) = 1$, $0 < x < \pi$
(b) $u_{xx} + u_{yy} = 0$, $0 < x < a, 0 < y < b$
 $u(0, y) = u(a, y) = 0$, $0 < y < b$
 $u(x, 0) = 0, u(x, b) = f(x)$, $0 < x < a$
(c) $u_{xx} + u_{yy} = 0$, $0 < x < 2, 0 < y < 2$
 $u(0, y) = u(2, y) = 0$, $0 < y < 2$
 $u(x, 0) = f(x), u(x, 2) = g(x), 0 < x < 2$

2. Find the solution of the following Neumann problem

(a) $u_{xx} + u_{yy} = 0$, $0 < x < \pi, 0 < y < \pi$, $u_x(0, y) = u_x(\pi, y) = 0$, $0 < y < \pi$ $u_y(x, 0) = u_y(x, \pi) = 0$, $0 < x < \pi$. (b) $u_{xx} + u_{yy} = 0$, $0 < x < \pi, 0 < y < \pi$, $u_x(0, y) = u_x(\pi, y) = 0$, $0 < y < \pi$ $u_y(x, 0) = 0$, $u_y(x, \pi) = \cos x$, $0 < x < \pi$

3. Find the solution of the following mixed problem

$$u_{xx} + u_{yy} = 0, \quad 0 < x < \pi, 0 < y < 1$$

$$u_x(0, y) = u_x(\pi, y) = 0, \quad 0 < y < 1$$

$$u(x, 0) = \cos^2 x, u_y(x, 1) = 0, \quad 0 < x < \pi$$

4. Find the solution in the polar coordinates:

(a)
$$\Delta u = 0$$
, $0 \le r < 1, 0 < \theta < 2\pi$
 $u(1, \theta) = \sin \theta - \sin 3\theta$, $0 \le \theta < 2\pi$
(b) $\Delta u = 0$, $r > 0, 0 < \theta < \pi/2$
 $u_{\theta}(r, 0) = 0$, $0 < r < 1$,
 $u(r, \pi/2) = (r^2 + 1)^2$, $0 < r < 1$
(c) $\Delta u = 0$, $1 < r < 2, 0 \le \theta < 2\pi$
 $u(1, \theta) = 3, u(2, \theta) = 4$, $0 \le \theta < 2\pi$

5. Find the solution of Laplace equation in \mathbb{R} , then find the solution of Dirichlet problem:

$$u_{xx} + u_{yy} + u_{zz} = 0, \quad (x, y, z) \in (0, a) \times (0, b) \times (0, c)$$
$$u(x, y, 0) = f(x, y), \quad (x, y) \in (0, a) \times (0, b)$$
$$u(0, y, z) = u(a, y, c) = u(x, 0, z) = u(x, b, z) = u(x, y, c) = 0$$

6. Find u which satisfies the Laplace equation in the half of sphere

$$0 \le r < 1, 0 \le \phi \le \pi/2$$

if

$$u(r,\pi/2)=0 \quad \forall r\in [0,1), \quad u(1,\phi)=1 \quad \forall \phi\in [0,\pi/2],$$

6 Wave Equation

Exercise 6:

$$1. \quad \frac{\partial^2 u}{\partial t^2}(x,t) = c^2 \frac{\partial^2 u}{\partial x^2}(x,t) \quad \text{for all } 0 < x < 1 \text{ and } t > 0$$

$$u(0,t) = u(1,t) = 0 \quad \text{for all } t > 0$$

$$u(x,0) = x(1-x) \quad \text{for all } 0 < x < 1$$

$$u_t(x,0) = 0 \quad \text{for all } 0 < x < 1$$

$$2. \quad \frac{\partial^2 u}{\partial t^2}(x,t) = c^2 \frac{\partial^2 u}{\partial x^2}(x,t) \quad \text{for all } 0 < x < 1 \text{ and } t > 0$$

$$u(0,t) = u(1,t) = 0 \quad \text{for all } t > 0$$

$$u(x,0) = \sin(5\pi x) + 2\sin(7\pi x) \quad \text{for all } 0 < x < 1$$

$$u_t(x,0) = 0 \quad \text{for all } 0 < x < 1$$

$$u_t(x,0) = 0 \quad \text{for all } 0 < x < 1$$

$$u_t(x,0) = 0 \quad \text{for all } 0 < x < 1$$

- $u_t(x,0) = \arctan(x) \quad x \in \mathbb{R}$
- 4. Find the solution of

$$\begin{cases} u_{tt} = a^2 u_{xx}, & x, t \in \mathbb{R} \\ u(x,0) = e^{-x^2}, & u_t(x,0) = 2axe^{-x^2} \end{cases}$$

5.
$$u_{tt} = 25u_{xx}$$
 $0 < x < 2$
 $u(x,0) = x^2(2-x), \quad u_t(x,0) = x^2, \quad u(0,t) = u(2,t) = 0$

7 Heat Equation

Exercise 7:

 $1. \ \ \frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < L, \ \ t > 0.$

$$u(x,0) = 6\sin(\frac{\pi x}{L})$$
$$u(0,t) = 0, \quad u(L,t) = 0$$

2.
$$\frac{\partial u}{\partial t} - \alpha^2 \frac{\partial^2 u}{\partial x^2} = 0$$
, $0 < x < L$, $t > 0$
 $\frac{\partial u}{\partial x}(0, t) = 0$
 $\frac{\partial u}{\partial x}(L, t) = 0$
 $u(x, 0) = f(x)$

3. $u_t = k u_{xx}, \quad x > 0, \ t > 0.$