Exercises

liner programming problem

1.1) A diet conscious housewife wishes to ensure certain minimum intake of vitamins A, B and C for the family. The minimum daily (quantity) needs of vitamins A,B and C for the family are respectively 30, 20 and 16 for the supply of theses minimum vitamin requirements, the house wife relies on two fresh foods. The **first** one provides 7, 5, 2 units of the three vitamins per gram respectively and the **second** one provides 2, 4, 8 units of the same three vitamins per gram of the foodstuff respectively. The first foodstuff costs 3\$ per gram and the second 2\$ per gram. **The problem is how many grams of each foodstuff should the housewife buy every day to keep her food bills as low as possible?** (Formulate the problem as liner programming problem.)

Answer:

let x_1 : *the number of* units of food 1. let x_2 : *the number of* units of foods 2. The data of the given problem can be summarized as below:

Food	Content of vitamins type			Cost per
	А	В	С	unit (\$)
<i>x</i> ₁	7	5	2	3
<i>x</i> ₂	2	4	8	2
Minimum	30	20	16	
vitamins				
required				

Objective function:

Minimum $Z = 3x_1 + 2x_2$ subject to the Constraints:

> (1) $7x_1 + 2x_2 \ge 30$ (2) $5x_1 + 4x_2 \ge 20$ (3) $2x_1 + 8x_2 \ge 16$ (4) $x_1, x_2 \ge 0$

- Solve graphically a Linear Programming model that will allow the housewife to minimize the cost. And determine the optimal solution.

To determine two points on the Constraints as follow $7x_1 + 2x_2 = 30 >> (0, 15)$ and (4.3, 0)

 $5x_1 + 4x_2 = 20 >> (0, 5)$ and (4, 0)

 $2x_1 + 8x_2 = 16 >> (0,2)$ and (8,0)

The optimal solution of an LPP occurs at point C. The values of associated with the optimum point C are determined by solving the equations associated with lines (1) and (3), that is,

To determine the direction of

$4^* \ (7x_1 + 2x_2 = 30)$
$(-)^* (2x_1 + 8x_2 = 16)$
$(28-2)x_1 = 120 - 16$
$26x_1 = 104 \gg x_1^* = 4$
$7(4) + 2x_2 = 30$
$x_2^* = \frac{30 - 28}{2} = 1$

Or we can find the optimal solution by compute the value of the objective function at each vertex (Extreme) pints, as follows

Points (x_1, x_2)	$Z = 3x_1 + 2x_2$
(0,15)	30
(4,1)	14
(8,0)	24

We have unique optimal solution at $x_1^* = 4$, $x_2^* = 1$ with an optimal value Z=14.

https://www.desmos.com/calculator/3f8hz2hvu4

1.2) The manager of an oil refinery has to decide the optimal production amount of the two processes with the following data in the table:

Process	input		Output	
	Crude A	Crude B	Gasoline X	Gasoline Y
1	5	3	5	8
2	4	5	4	4

The <u>maximum amount</u> available of crude A and B are 200 units and 150 units respectively. Market requirements show that <u>at least</u> 100 units of gasoline X and 80 units of gasoline Y must be produced. The **profits** per production run from process 1 and process 2 are 3\$ and 4\$ respectively. **Formulate the problem as liner programming problem.**

Answer:

let x_1 : the number of production runs from processes 1. let x_2 : the number of production runs from processes 2.

Objective function:

Maximize $Z = 3x_1 + 4x_2$

Constrains:

$(1) 5x_1 + 4x_2 \le 200$	Maximum amounts of crude A available
$(2) \ 3x_1 + 5x_2 \le 150$	Maximum amounts of crude B available
$(3) \ 5x_1 + 4x_2 \ge 100$	Minimum amount of gasoline X to be produced
$(4) 8x_1 + 4x_2 \ge 80$	Minimum amount of gasoline Y to be produced
(5) x_1 , $x_2 \ge 0$	

1.3) A workshop has three (3) types of machines A, B and C; it can <u>manufacture</u> <u>two</u> (2) products 1 and 2, and all products have to go to each machine and each one goes in the same order; First to the machine A, then to B and then to C. The following table shows:

- The hours needed at each machine, per product unit.
- The total available hours for each machine, per week.
- The profit of each product per unit sold.

Type of Machine	Product 1	Product 2	Available hours per week
Α	2	2	16
В	1	2	12
С	4	2	28
Profit per unit	1	1.50	

Formulate and solve using the **graphical method** a **Linear Programming model** for the previous situation that allows the workshop to obtain <u>maximum gains</u>.

Answer:

let x_1 :the number of units of product 1 per week. let x_2 :the number of units of product 2 per week.

Objective function:

Maximize $Z = x_1 + 1.5x_2$ Constrains: (1) $2x_1 + 2x_2 \le 16$ (2) $x_1 + 2x_2 \le 12$ (3) $4x_1 + 2x_2 \le 28$ (4) $x_1, x_2 \ge 0$

For the graphical solution:

Step 1: since x_1 , $x_2 \ge 0$, we consider only the first quadrant of x y-plane. Step 2: we draw straight lines for the following equations:

$$2x_1 + 2x_2 = 16x_1 + 2x_2 = 124x_1 + 2x_2 = 28$$

To determine two point on the straight line $2x_1 + 2x_2 = 16$ let $x_2 = 0 >> x_1 = 8$, (8,0) is a point on the line1. let $x_1 = 0 >> x_2 = 8$, (0,8) is a point on the line1. To determine two point on the straight line $x_1 + 2x_2 = 12$ let $x_2 = 0 >> x_1 = 12$, (12,0) is a point on the line 2. let $x_1 = 0 >> x_2 = 6$, (0,6) is a point on the line 2. To determine two point on the straight line $4x_1 + 2x_2 = 28$ let $x_2 = 0 >> x_1 = 14$, (7,0) is a point on the line 3. let $x_1 = 0 >> x_2 = 14$, (0,14) is a point on the line 3.

https://www.desmos.com/calculator/cgc1f18x0f

The intersection of region is the feasible solution of LPP (linear programming problem).

Therefore, every point in the shaded region is a feasible solution of LPP, since this point satisfies all the constraints including the non-negative constraints.

Technique to find the optimal solution of an LPP

<u>Step 1:</u> Find the coordinates of each vertex (corner point-Extreme point) of the feasible region. These coordinates can be obtained from the graph *or* by solving the equations of the lines. <u>Step 2:</u> at each vertex compute the value of objective function.

Points (x_1, x_2)	$Z = x_1 + 1.5x_2$
(0,0)	0
(0,6)	0.25
(4,4)	10
(6,2)	9
(7,0)	7

<u>Step 3:</u> Identify the vertex at which the value of objective function is <u>maximum</u>.

The optimal solution at $x_1 = 4$, $x_2 = 4$ with an optimal value Z=10 that represents the workshop's profit.

#Coordinates can be obtained by solving the equations of the binding constraint, as following

$2x_1 + 2x_2 = 16$ (-)* (x ₁ + 2x ₂ = 12)	$2x_1 + 2x_2 = 16$ (-)* (4x_1 + 2x_2 = 28)	
$(2x_1 - x_1) + (2x_2 - 2x_2) = 16 - 12$ $x_1 = 4$ $2(4) + 2x_2 = 16$ $x_2 = \frac{16 - 8}{2} = 4$ >> (4, 4)	$-2x_{1} = -12$ $x_{1} = 6$ $x_{2} = \frac{16 - 12}{2} = 2$ $>> (6,2)$	

*Note: we can use the Graphic Linear Optimizer (GLP) software to solution like this model.

https://www.desmos.com/calculator/2rnqgoa6a4

HW (1.4) A company produces two different products. One of them needs 1/4 of an hour of assembly work per unit (عمل التجميع), 1/8 of an hour in quality control work (عمال ضبط الجوده) and US\$1.2 in raw materials. The other product requires 1/3 of an hour of assembly work per unit, 1/3 of an hour in quality control work and US\$0.9 in raw materials. Given the current availability of staff in the company, each day there is <u>at most</u> a total of 90 hours available for **assembly** and **80** hours for **quality control**. The first and second products described have a market value (sale price) of US\$9.0 and \$8.0 per unit respectively. In addition, the maximum amount of daily sales for the first product is estimated to be 200 units, without there being a maximum limit of daily sales for the second product.

Formulate and solve graphically a Linear Programming model that will allow the company to maximize profits.