Exercise of Transportation problem

Example 1: A Company has 2 production facilities $S 1$ and $S 2$ with production capacity of 100 and 110 units per week of a product, respectively. These units are to be shipped to 3 warehouses D1, D2 and D3 with requirement of 80,70 and 60 units per week, respectively. The transportation costs (in \$) per unit between factories to warehouses are given in the table below.
A)

Destination						D_{1}	D_{2}	D_{3}	Supply
Sources									
S_{1}	1	2	3	100					
S_{2}	4	1	5	110					
Demand	80	70	60						

Find initial basic feasible solution (IBFS) to the following transportation problem using NWCM, then optimize the solution using MODI method (Modified Distribution Method -UV method) .

Answer:

$$
\begin{array}{r}
\operatorname{Min} Z=x_{11}+2 x_{12}+3 x_{13}+4 x_{21}+x_{22}+5 x_{23} \\
x_{11}+x_{12}+x_{13} \leq \mathbf{1 0 0} \\
x_{21}+x_{22}+x_{23} \leq \mathbf{1 1 0} \\
x_{11}+x_{21} \geq \mathbf{8 0} \\
x_{12}+x_{22} \geq \mathbf{7 0} \\
x_{13}+x_{23} \geq \mathbf{6 0}
\end{array}
$$

$$
\begin{aligned}
& \operatorname{Min} Z=\sum_{i=1}^{n} \sum_{j=1}^{m} c_{i j} x_{i j} \\
& \text { s.t } \\
& \sum_{j=1}^{m} x_{i j} \leq s_{i} \\
& \sum_{i=1}^{n} x_{i j} \geq d_{j}
\end{aligned}
$$

$\sum_{i=1}^{m} s_{i}=\sum_{j=1}^{n} d_{j}=210$, so we don't need dummy demand or dummy supply.
starting point is the north-west corner of the table.
$\min \left(S_{1}=100, D_{1}=80\right)=\mathbf{8 0}$, This satisfies the total demand of D_{1} and leaves $100-80=20$ units with S_{1}.
$\min \left(S_{1}=20, D_{1}=70\right)=20$, This exhausts the capacity of S_{1} and remain $70-20=50$ units for D_{2}
$\min \left(S_{2}=110, D_{2}=50\right)=\mathbf{5 0}$, This satisfies the total demand of D_{2} and leaves $110-50=60$ units with S_{2}.
$\min \left(S_{2}=60, D_{3}=60\right)=60$, This satisfies S_{2} and D_{3}.

Initial feasible solution (IBFS) is:

$$
X_{11}=80, X_{12}=20, X_{22}=50, X_{23}=60, X_{13}=0, X_{21}=0
$$

The total transportation cost:
TTC $=Z=80 * 1+20 * 2+50 * 1+60 * 5=470 \$$

The number of allocated cells $=4$ is equal to $m+n-1=3+2-1=4$, so the solution could be improved.

Optimality test using MODI method...

$$
\boldsymbol{\delta}_{\boldsymbol{k j}}=v_{j}+u_{i}-\boldsymbol{C}_{\boldsymbol{k j}},
$$

1. Find u_{i} and v_{j} for all occupied cells (i, j), where $v_{j}+u_{i}=C_{i j}$

- Let $u_{1}=0$
- $c_{11}=u_{1}+v_{1} \Rightarrow v_{1}=c_{11}-u_{1} \Rightarrow v_{1}=1-0 \Rightarrow v_{1}=1$
- $c_{12}=u 1+v 2 \Rightarrow v 2=c 12-u 1 \Rightarrow v 2=2-0 \Rightarrow v 2=2$
- $c_{22}=u 2+v 2 \Rightarrow u 2=c 22-v 2 \Rightarrow u 2=1-2 \Rightarrow u 2=-1$
- $c_{23}=u_{2}+v_{3} \Rightarrow v_{3}=c_{23}-u_{2} \Rightarrow v_{3}=5+1 \Rightarrow v_{3}=6$

2. Find $\boldsymbol{\delta}_{\boldsymbol{k} \boldsymbol{l}}=\boldsymbol{v}_{\boldsymbol{l}}+\boldsymbol{u}_{\boldsymbol{k}}-\boldsymbol{C}_{\boldsymbol{k} \boldsymbol{l}}$ for all unoccupied cells (k, 1). IF all $\boldsymbol{\delta}_{\mathrm{kl}} \leq 0$, the solution is optimal solution.
3. Now choose the maximum positive value from all $\delta_{k j}$ (opportunity cost) $=\delta_{13}=3$ and draw a closed path $\boldsymbol{S} 1 \boldsymbol{D} 3 \rightarrow \boldsymbol{S} 2 \boldsymbol{D} 3 \rightarrow \boldsymbol{S} 2 \boldsymbol{D} 2 \rightarrow \boldsymbol{S} 1 \boldsymbol{D} 2$ with plus/minus sign allocation.
4. Minimum allocated value among all negative position (-) on closed path $\theta=20$ Subtract 20 from all (-) and Add it to all (+).

		$\mathrm{V}_{1}=1$	$\mathrm{V}_{2}=2$	$\mathrm{V}_{3}=6$	
	\square	D_{1}	D_{2}	D_{3}	Supply
$\mathrm{U}_{1}=0$	S_{1}	$\begin{array}{ll} & 1 \\ 80 \end{array}$	$20^{-\quad 2}$	$\longrightarrow+\delta_{13}=3$	100
$\mathrm{U}_{2}=-1$	$\mathbf{S}_{\mathbf{2}}$	$\begin{array}{r} 4 \\ \delta_{21}=-4 \end{array}$	$\begin{array}{r\|r} + & 1 \\ 50 & 4 \end{array}$	\square- 60	110
	Demand	80	70	60	

5. Repeat the step 1 to 4 , until an optimal solution is obtained.

		$\mathrm{V}_{1}=1$	$\mathrm{V}_{2}=-1$	$\mathrm{V}_{3}=3$	
	Destination Sources	D_{1}	D_{2}	D_{3}	Supply
$\mathrm{U}_{1}=0$	S_{1}	$\begin{array}{ll} & 1 \\ 80 & \end{array}$	$\delta_{12}=-3$	$\begin{array}{ll} \hline & 3 \\ 20 & \\ \hline \end{array}$	100
$\mathrm{U}_{2}=2$	S 2	$\delta_{21}=-1$	$\begin{array}{ll} \hline & 1 \\ 70 & \\ \hline \end{array}$	$\begin{array}{ll} & 5 \\ 40 & \end{array}$	110
	Demand	80	70	60	

The new solution (*):

$$
X_{11}=80, X_{13}=20, X_{22}=70, X_{23}=40, X_{12}=X_{21}=0
$$

The minimum total transportation cost: $Z^{*}=80 * 1+20 * 3+70 * 1+40 * 5=410 \$$ The number of allocated cells $=4$ is equal to $\mathrm{m}+\mathrm{n}-1=3+2-1=4$.
All $\boldsymbol{\delta}_{\mathrm{kj}} \leq 0$, so solution $\left(^{*}\right)$ is an optimal solution.

B) same previous example (A) but change $\mathbf{S} 2$ to 130 rather than 110.

Answer:

Destination	D	D	D	
Sources				
S_{1}	1	2	3	100
S_{2}	4	1	5	130
Demand	80	70	60	210

Here Total Demand $=210$ is less than Total Supply $=230$. So, we add a dummy demand constraint with 0 unit cost and with allocation 20. ($\boldsymbol{x}_{\mathbf{1 4}}+\boldsymbol{x}_{\mathbf{2 4}} \geq \mathbf{2 0}$)

Destination		D_{1}	D_{2}	D_{3}	D_{4} (Dummy)
Sources		Supply			
S_{1}	1	2	3	0	100
S_{2}	4	1	5	0	130
Demand	80	70	60	20	$\mathbf{2 3 0}=\mathbf{2 3 0}$

Initial feasible solution (IBFS) is:

$$
X_{11}=80, X_{12}=20, X_{22}=50, X_{23}=60, X_{24}=20, X_{13}=X_{14}=X_{21}=0
$$

The minimum total transportation cost:

$$
T T C=Z=80 * 1+20 * 2+50 * 1+60 * 5+20 * 0=470
$$

Here, the number of allocated cells $=5$ is equal to $m+n-1=2+4-1=5$
Not all $\boldsymbol{\delta}_{\mathrm{kj}} \leq 0$, so IBFS is not an optimal solution.

		$\mathrm{V}_{1}=1$	$\mathrm{V}_{2}=-1$	$\mathrm{V}_{3}=3$	$\mathrm{V}_{4}=-2$	Supply
	Destination Sources	D_{1}	D_{2}	D_{3}	D_{4} (Dummy)	
$\mathrm{U}_{1}=0$	S_{1}	$\begin{array}{rr} 1 \\ 80 \\ \hline \end{array}$	$\delta_{12}=-3^{\mathbf{2}}$	20^{3}	$\delta_{14}=-2$	100
$\mathrm{U}_{2}=2$	S_{2}	$\delta_{21}=-1$	${ }_{70} \begin{aligned} & \mathbf{1} \end{aligned}$	405	20	110
	Demand	80	70	60	20	

The new solution (*):

$$
\begin{aligned}
X_{11}=80, X_{13} & =20, X_{22}=70, X_{23}=40, X_{24}=20, X_{12}=X_{21}=0 \\
Z^{*} & =80 * 1+20 * 3+70 * 1+40 * 5=410 \$
\end{aligned}
$$

The number of allocated cells $=5$ is equal to $\mathrm{m}+\mathrm{n}-1=4+2-1=5$.
All $\boldsymbol{\delta}_{\mathrm{kj}} \leq 0$, so solution (*) is an optimal solution.

C) same previous example in part (B) but change D1, D2 and D3 to

90,80 and 100 units per week, respectively.

Answer:

Destination Sources	D_{1}	D_{2}	D_{3}	Supply
S_{1}	1	2	3	100
S_{2}	4	1	5	130
Demand	90	80	100	

Here Total Demand $=270$ is greater than Total Supply $=230$. So, we add a dummy supply constraint with 0 unit cost and with allocation 40. ($\boldsymbol{x}_{\mathbf{3 1}}+\boldsymbol{x}_{\mathbf{3 2}}+\boldsymbol{x}_{\mathbf{3 3}} \leq \mathbf{4 0}$)

Initial feasible solution (IBFS) is:

$$
X_{11}=90, X_{12}=10, X_{22}=70, X_{23}=60, X_{33}=40, X_{13}=X_{21}=X_{31}=X_{32}=0
$$

The total transportation cost:
$T T C=Z=90 * 1+10 * 2+70 * 1+60 * 5+40 * 0=480 \$$
Here, the number of allocated cells $=5$ is equal to $\mathrm{m}+\mathrm{n}-1=3+3-1=5$
Not all $\boldsymbol{\delta}_{\mathrm{kj}} \leq 0$, so IBFS is not an optimal solution.

		$\mathrm{V}_{1}=-2$	$\mathrm{V}_{2}=-4$	$\mathrm{V}_{3}=0$	Supply
	Destination Sources	D_{1}	D_{2}	D_{3}	
$\mathrm{U}_{1}=3$	S_{1}	$\begin{array}{ll} \hline & 1 \\ 90 \end{array}$	$\delta_{12}=-3^{2}$	10^{3}	100
$\mathrm{U}_{2}=5$	S_{2}	$\delta_{21}=-14$	$\begin{array}{ll} \hline & 1 \\ 80 \end{array}$	505	130
$\mathrm{U}_{3}=0$	S_{3} (Dummy)	$\begin{array}{r} \mathbf{0} \\ \delta_{12}=-2 \\ \hline \end{array}$	$\begin{array}{r} \mathbf{0} \\ \delta_{12}=-4 \end{array}$	$40 \quad 0$	40
	Demand	90	80	100	

All $\boldsymbol{\delta}_{\mathrm{kj}} \leq 0$, so the optimal solution is:
$X_{11}=90, X_{13}=10, X_{22}=80, X_{23}=50, X_{33}=40, X_{12}=X_{21}=X_{31}=X_{32}=0$
The minimum total transportation cost: $Z^{*}=90 * 1+10 * 3+80 * 1+50 * 5=450 \$$ The number of allocated cells $=5$ is equal to $\mathrm{m}+\mathrm{n}-1=3+3-1=5$.

\# Degenerate case

Example 2: A company has factories at $\mathrm{S} 1, \mathrm{~S} 2$ and S 3 which supply to warehouses at D1, D2, D3 and D4. Weekly factory capacities are 18, 3 and 30 units, respectively. Weekly warehouse requirement are 21, 15, 9 and 6 units, respectively. Unit shipping costs (in Dollar) are as follows:

Destination	D_{1}	D_{2}	D_{3}	Supply	
Sources					
S_{1}	8	21	44	28	18
S_{2}	4	0	24	4	3
S_{3}	20	32	60	36	30
Demand	21	15	9	6	

Solution:

Initial feasible solution (IBFS) is:

$$
X_{11}=18, X_{21}=3, X_{32}=15, X_{33}=9, X_{34}=6
$$

The total transportation cost:
TTC $=Z=8 * 18+4 * 3+32 * 15+60 * 6=1392 \$$
The number of allocated cells $=5 \neq \mathbf{m}+\mathbf{n - 1}=\mathbf{3}+\mathbf{4 - 1}=\mathbf{6}$, then degeneracy does exist.
Note: this solution is degenerate.
To resolve degeneracy, we proceed by allocating a small quantity $(\boldsymbol{\varepsilon})$ to one or more (if needed) unoccupied cells that have lowest transportation costs, so as to allocate $m+n-1$ cells.
The quantity $\boldsymbol{\varepsilon}$ is assigned to cell $(2,2)$, which has the minimum transportation cost $=\mathbf{0}$.

	Iteration-1 Destination Sources	$\mathrm{V}_{1}=36$	$\mathrm{V}_{2}=32$	$\mathrm{V}_{3}=60$	$\mathrm{V}_{4}=36$	$\begin{aligned} & \text { Sup } \\ & \text { ply } \end{aligned}$
		D_{1}	D_{2}	D_{3}	D_{4}	
$\mathrm{U}_{1}=-28$	S_{1}	8 18	$\begin{array}{r} \mathbf{2 1} \\ \delta_{12}=-17 \end{array}$	$\begin{array}{r} 44 \\ \delta_{13}=-12 \end{array}$	$\begin{array}{r} \mathbf{2 8} \\ \delta_{14}=-20 \end{array}$	18
$\mathrm{U}_{2}=-32$	\mathbf{S}_{2}	-4	$\left.\rightarrow\right\|_{\varepsilon} ^{+0}$	$\delta_{23}=\begin{gathered} \mathbf{2 4} \end{gathered}$	$\begin{array}{r} \mathbf{4} \\ \delta_{24}= \end{array}$	3
$\mathrm{U}_{3}=0$	S 3	$\begin{aligned} & +20 \\ \delta_{31} & =16 \end{aligned}$	$ـ^{v}-\begin{aligned} & 32 \\ & 15 \end{aligned}$	60	36 6	30
	Demand	21	15	9	6	$\begin{aligned} & 51 \\ & 51 \end{aligned}$

To Find u_{i} and v_{j} for all occupied cells (i, j$)$, where $v_{j}+u_{i}=C_{i j}$

- Let $u_{3}=0$
- $c_{32}=u_{3}+v_{2} \Rightarrow v_{2}=c_{32}-u_{3} \Rightarrow v_{2}=32-0=32$
- $c_{33}=u_{3}+v_{3} \Rightarrow v_{3}=c_{33}-u_{3} \Rightarrow v_{3}=60-0 \Rightarrow v_{3}=60$
- $c_{34}=u_{3}+v_{4} \Rightarrow v_{4}=c_{34}-u_{3} \Rightarrow v_{4}=36-0=36$
- $c_{22}=u_{2}+v_{2} \Rightarrow u_{2}=c_{22}-v_{2} \Rightarrow u_{2}=0-32=-32$
- $c_{21}=u_{2}+v_{1} \Rightarrow v_{1}=c_{21}-u_{2} \Rightarrow v_{1}=4-(-32)=36$
- $c_{11}=u_{1}+v_{1} \Rightarrow u_{1}=c_{11}-v_{1} \Rightarrow u_{1}=8-36=-28$

It is clear that not all $\boldsymbol{\delta}_{\mathbf{k j}} \leq 0$, so IBFS is not an optimal solution.

	Iteration-2	$V_{1}=20$	$\mathrm{V}_{2}=32$	$\mathrm{V}_{3}=60$	$\mathrm{V}_{4}=36$	
	Destination Sources		D_{2}	D_{3}	D_{4}	Supply
$\mathrm{U}_{1}=-12$	S_{1}	- $\frac{8}{18}$	21 $\delta_{12}=-1$	$\begin{array}{r} +44 \\ \delta_{13}=4 \end{array}$	28 $\delta_{14}=-4$	18
$\mathrm{U}_{2}=-32$	\mathbf{S}_{2}	$\delta_{21}=\begin{array}{r}4 \\ -16\end{array}$	$\varepsilon+3{ }^{\mathbf{0}}$		4 $\delta_{24}=0$	3
$\mathrm{U}_{3}=0$	S 3	+ 20	$\frac{32}{12}$	$\checkmark-60$		30
	Demand	21	15	9	6	51

The new solution (*) is:

$$
\begin{gathered}
X_{11}=18, X_{22}=\varepsilon+3, X_{31}=3, X_{32}=15, X_{33}=9, X_{34}=6 \\
X_{12}=X_{13}=X_{13}=X_{14}=X_{21}=X_{23}=X_{24}=0
\end{gathered}
$$

The total transportation cost:
TTC $=Z=8 * 18+0 *(\varepsilon+3)+20 * 3+32 * 12+60 * 9+36 * 6=1344 \$$
The number of allocated (occupied) cells $=6=\mathbf{m}+\mathbf{n - 1}=\mathbf{3 + 4} \mathbf{- 1}=\mathbf{6}$, so the solution could be improved.
find u_{i} and $v_{j} \Rightarrow \cdots$
It is clear that not all $\boldsymbol{\delta}_{\mathbf{k j}} \leq 0$, so solution (*) is not an optimal solution.

	Iteration-3	$\mathrm{V}_{1}=20$	$\mathrm{V}_{2}=32$	$\mathrm{V}_{3}=56$	$\mathrm{V}_{4}=36$	
	Destination Sources	D_{1}	D_{2}	D_{3}	D_{4}	Supply
$\mathrm{U}_{1}=-12$	S_{1}	8 9	$\begin{array}{r} \mathbf{2 1} \\ \delta_{12}=-1 \end{array}$	44 9	$\begin{array}{r} \mathbf{2 8} \\ \delta_{14}=-4 \end{array}$	18
$\mathrm{U}_{2}=-32$	S_{2}	$\begin{array}{r} \mathbf{4} \\ \delta_{21}=-16 \end{array}$	$\varepsilon+3^{\mathbf{0}}$	$\delta_{23}=\begin{aligned} & \mathbf{2 4} \end{aligned}$	$\begin{array}{r} \mathbf{4} \\ \delta_{24}=0 \end{array}$	3
$\mathrm{U}_{3}=0$	S_{3}	$\begin{aligned} & 20 \\ & 12 \end{aligned}$	32	$\begin{array}{r} \mathbf{6 0} \\ \delta_{33}=-4 \end{array}$	36 6	30
	Demand	21	15	9	6	51

The new solution (${ }^{* *}$) is:

$$
\begin{gathered}
X_{11}=9, X_{12}=9, X_{22}=\varepsilon+3, X_{31}=12, X_{32}=12, X_{34}=6 \\
X_{12}=X_{13}=X_{21}=X_{23}=X_{24}=X_{33}=0
\end{gathered}
$$

The minimum total transportation cost:
TTC $=Z=8 * 9+44 * 9+0 *(\varepsilon+3)+20 * 12+32 * 12+36 * 6=\mathbf{1 3 0 8} \$$
The number of allocated cells $=6=\mathbf{m}+\mathbf{n - 1}=\mathbf{3}+\mathbf{4 - 1}=\mathbf{6}$, so the solution could be improved.

$$
\text { find } u_{i} \text { and } v_{j} \Rightarrow \cdots
$$

All $\boldsymbol{\delta}_{\mathbf{k j}} \leq 0$, so solution (${ }^{* *}$) is an optimal solution.
Note: alternate solution is available with unoccupied cell $(2,4)$, but with the same optimal value.

Example 3: Find the optimal solution and minimum total cost to the following transportation problem:

Destination	D_{1}	D_{2}	Supply	
Sources				
S_{1}	6	4	2	70
S_{2}	6	3	2	50
S_{3}	1	5	1	10
Demand	50	50	30	130

Solution:

		$\mathrm{V}_{1}=5$	$\mathrm{V}_{2}=4$	$\mathrm{V}_{3}=3$		200
	Destination Sources	D_{1}	D_{2}	D_{3}	Supply	
$\mathrm{U}_{1}=0$	S_{1}	$4 \begin{array}{r}-\quad 5 \\ \hline 50\end{array}$	$\rightarrow \begin{array}{r}+4 \\ 20\end{array}$	2 $\delta=1$	70	
$\mathrm{U}_{2}=-1$	$\mathbf{S}_{\mathbf{2}}$	6 $\delta=-2$	$\checkmark \begin{array}{r}-\quad 3 \\ \hline 30\end{array}$	$\rightarrow \begin{array}{r}+2 \\ \\ \hline\end{array}$	50	200
$\mathrm{U}_{3}=-2$	S_{3}	$\begin{array}{r}+1 \\ \text { + } \\ \hline\end{array}$	砳	$\checkmark-\quad 18$	10	
	Demand	50	50	30		
		0	$\begin{gathered} 30 \\ 0 \end{gathered}$	10		

Initial feasible solution (IBFS) is:

$$
X_{11}=50, X_{21}=20, X_{22}=30, X_{23}=20, X_{33}=10
$$

The total transportation cost:
$T T C=Z=5 * 50+4 * 20+3 * 30+2 * 20+1 * 10=\mathbf{4 7 0}$
Here, the number of allocated cells $=5=\mathbf{m}+\mathbf{n - 1}=\mathbf{3 + 4 - 1}=\mathbf{5}$, so the solution could be improved.
Not all $\boldsymbol{\delta}_{\mathrm{kj}} \leq 0$, so IBFS is not an optimal solution.

		$\mathrm{V}_{1}=5$	$\begin{array}{\|l} \hline \mathrm{V}_{2}=4 \\ \hline \mathrm{D}_{2} \end{array}$	$\begin{aligned} & V_{3}=3 \\ & \hline D_{3} \end{aligned}$	Supply
	Destination Sources	D_{1}			
$\mathrm{U}_{1}=0$	S_{1}	5 40	$\begin{array}{r}-\quad 4 \\ \hline-30\end{array}$	$\left.\right\|_{\delta_{13}}=\mathbf{+ 2}$	70
$\mathrm{U}_{2}=-1$	S 2	$\delta_{21}=-2$	+3 $4 \quad 20$	$\checkmark \quad-\quad \mathbf{2}$	50
$\mathrm{U}_{3}=-4$	S_{3}	1 10	$\begin{array}{r} \mathbf{5} \\ \delta_{32}=-5 \end{array}$	$\begin{array}{r} \mathbf{1} \\ \delta_{33}=-2 \end{array}$	10
	Demand	50	50	30	

The new solution (*):

$$
X_{11}=40, X_{12}=30, X_{22}=20, X_{23}=30, X_{31}=10, X_{13}=X_{21}=X_{32}=X_{33}=0
$$

The total transportation cost:
TTC $=Z=5 * 40+4 * 30+3 * 20+2 * 30+1 * 10=450$
Here, the number of allocated (occupied) cells $=5=\mathbf{m}+\mathbf{n - 1}=\mathbf{3 + 4 - 1}=\mathbf{5}$, so the solution could be improved.
Not all $\boldsymbol{\delta}_{\mathrm{kj}} \leq 0$, so solution $\left({ }^{*}\right)$ is not an optimal solution.

	Destination Sources	$\mathrm{V}_{1}=5$	$\mathrm{V}_{2}=$?		Supply
		D_{1}	D_{2}	D_{3}	
$\mathrm{U}_{1}=0$	S_{1}	5 40	4	2 30	70
$\mathrm{U}_{2}=$?	$\mathbf{S}_{\mathbf{2}}$	6	$\begin{array}{r} 3 \\ 50 \end{array}$	2	50
$\mathrm{U}_{3}=-4$	S_{3}	$\begin{array}{r} 1 \\ 10 \end{array}$	5	1	10
	Demand	50	50	30	

The new solution $\left({ }^{* *}\right)$:

$$
X_{11}=40, X_{13}=30, X_{22}=50, X_{31}=10, X_{12}=X_{21}=X_{23}=X_{32}=X_{33}=0
$$

The total transportation cost:
TTC $=Z=5 * 40+2 * 30+3 * 50+1 * 10=420$
The number of allocated (occupied) cells $=4 \neq \mathbf{m}+\mathbf{n - 1}=\mathbf{3 + 4} \mathbf{- 1}=\mathbf{5}$, then degeneracy does exist (the solution cannot be improved)

Note: Is the solution ** optimal?
To Find u_{i} and v_{j} for all occupied cells (i, j), where $v_{j}+u_{i}=C_{i j}$

- Let $u_{1}=0$, we get
- $u_{1}+v_{1}=5 \Rightarrow v_{1}=5$
- $u_{1}+v_{3}=2 \Rightarrow v_{3}=2$
- $u_{2}+v_{2}=3 \Rightarrow u_{2}=$? , $v_{2}=$? The u_{2} and v_{2} cannot be assigned because the occupied cells condition is not met.
- $u_{3}+v_{1}=1 \Rightarrow u_{3}+5=1 \Rightarrow u_{3}=-4$

To resolve degeneracy, we proceed by allocating a small quantity $(\boldsymbol{\varepsilon})$ to one or more (if needed) unoccupied cells that have lowest transportation costs, so as to allocate $m+\mathrm{n}-1$ cells.

			$\mathrm{V}_{2}=$?		Supply
	Destination Sources	D_{1}	D_{2}	D_{3}	
$\mathrm{U}_{1}=0$	S_{1}	$\begin{array}{r} \mathbf{5} \\ 40 \\ \hline \end{array}$	4	2 30	70
$\mathrm{U}_{2}=$?	S_{2}	6	$\begin{array}{r} 3 \\ 50 \end{array}$	2	50
$\mathrm{U}_{3}=-4$	S_{3}	$\begin{array}{r} 1 \\ 10 \\ \hline \end{array}$	5	$1 \begin{aligned} & 1 \\ & \varepsilon\end{aligned}$	10
	Demand	50	50	30	

If the quantity $\boldsymbol{\varepsilon}$ is assigned to cell $(3,3)$, which has the least transportation cost $=1$.
Obviously, assigning ε to cell $(3,3)$ does not help in finding the values of u_{2} and v_{2}.
To Find u_{i} and v_{j} for all occupied cells (i, j), where $v_{j}+u_{i}=C_{i j}$

- let $u_{1}=0$
- $u_{1}+v_{1}=5 \Rightarrow v_{1}=5$
- $u_{1}+v_{3}=2 \Rightarrow v_{3}=2$
- $u_{2}+v_{2}=3 \Rightarrow u_{2}=$?,$v_{2}=$? The u_{2} and v_{2} cannot be assigned because the occupied cells condition is not met.
- $u_{3}+v_{1}=1 \Rightarrow u_{3}+5=1 \Rightarrow u_{3}=-4$
- $u_{3}+v_{3}=1 \Rightarrow-4+2 \neq 1$

Therefore, assigning ε to cell $(2,3)$, which has the second least transportation cost=2.

		$\mathrm{V}_{1}=5$	$\mathrm{V}_{2}=3$	$\mathrm{V}_{3}=2$	
	\square	D_{1}	D_{2}	D_{3}	Supply
$\mathrm{U}_{1}=0$	S_{1}	$\begin{array}{r} 5 \\ 40 \end{array}$	$\begin{gathered} \mathbf{4} \\ \delta_{12}=-1 \end{gathered}$	$\begin{array}{r} \mathbf{2} \\ 30 \end{array}$	70
$\mathrm{U}_{2}=0$	S_{2}	$\delta_{21}=-1$	$\begin{array}{r} 3 \\ 50 \\ \hline \end{array}$	ε^{2}	50
$\mathrm{U}_{3}=-4$	S_{3}	$\begin{array}{r} 1 \\ 10 \\ \hline \end{array}$	$\delta_{32}=-\mathbf{5}^{\mathbf{5}}$	$\delta_{33}=-3^{\mathbf{1}}$	10
	Demand	50	50	30	

To Find u_{i} and v_{j} for all occupied cells (i, j), where $v_{j}+u_{i}=C_{i j}$

- Substituting, $u_{1}=0$, we get
- $u_{1}+v_{1}=5 \Rightarrow v_{1}=5$
- $u_{1}+v_{3}=2 \Rightarrow v_{3}=2$
- $u_{2}+v_{3}=2 \Rightarrow u_{2}+2=2 \Rightarrow u_{2}=0$
- $u_{2}+v_{2}=3 \Rightarrow 0+v_{2}=3 \Rightarrow, v_{2}=3$
- $u_{3}+v_{1}=1 \Rightarrow u_{3}+5=1 \Rightarrow u_{3}=-4$

The new solution $\left({ }^{* * *}\right)$:

$$
X_{11}=40, X_{13}=30, X_{22}=50, X_{23}=\varepsilon, X_{31}=10, X_{12}=X_{21}=X_{32}=X_{33}=0
$$

The minimum total transportation cost:

$$
T T C=Z=5 * 40+2 * 30+3 * 50+2 \varepsilon+1 * 10=\mathbf{4 2 0}+\mathbf{2 \varepsilon}
$$

ε is small quantity close to zero, $\varepsilon \approx 0$

$$
T T C=Z=420
$$

It is obvious that all $\boldsymbol{\delta}_{\mathrm{kj}} \leq 0$, then solution $\left({ }^{* * *}\right)$ is optimal solution.
H.W Example 4: The ICARE Company has three factors located throughout a state with production capacity 40,15 and 40 gallons. Each day the firm must furnish its four retail shops D1, D2, D3 with at least 25,55 , and 20 gallons respectively. The transportation costs (in \$.) are given below.

Destination Sources	D_{1}	D_{2}	D_{3}	Supply
S ${ }_{1}$	10	7	8	40
$\mathrm{S}_{\mathbf{2}}$	15	12	9	15
S_{3}	7	8	12	40
Demand	25	55	20	

Q: Find the optimum transportation schedule and minimum total cost of transportation.
Answer:
The minimum total transportation cost $=7 \times 40+9 \times 15+7 \times 25+8 \times 15+0 \times 5=710$

	Destination Sources	$\mathrm{V}_{1}=3$	$\mathrm{V}_{2}=0$	$\mathrm{V}_{3}=4$		
		D_{1}	D_{2}	D_{3}	Supply	
$\mathrm{U}_{1}=7$	S_{1}	25^{10}	15^{7}	$\begin{array}{r} 8 \\ \delta_{13}=3 \end{array}$	40	150
$\mathrm{U}_{2}=12$	$\mathbf{S}_{\mathbf{2}}$	$\begin{array}{r} 15 \\ \delta_{21}=0 \end{array}$	$-15{ }^{12}$	[$\begin{array}{r}+ \\ + \\ \delta_{23}=7\end{array}$	15	0
$\mathrm{U}_{3}=8$	S_{3}	$\begin{array}{r} 7 \\ \delta_{31}=4 \end{array}$	$+\underset{25}{ } 8$	$\rightarrow{ }_{15} \mathbf{1 2}$	40	150
$\mathrm{U}_{4}=-4$	S_{4} (Dummy)	$\begin{array}{r} \mathbf{0} \\ \delta_{41}=-1 \end{array}$	$\begin{array}{r} \mathbf{0} \\ \delta_{42}=-4 \end{array}$	${ }_{5} \quad \mathbf{0}$	5	0
	Demand	25	55	20		
		0	$\begin{gathered} 40 \\ 25 \\ 0 \\ \hline \end{gathered}$	$\begin{aligned} & 5 \\ & 0 \end{aligned}$		

$$
\theta=15 \text { Subtract } 15 \text { from all (-) and Add it to all (+). }
$$

	Destination Sources	$\mathrm{V}_{1}=10$	$\mathrm{V}_{2}=7$	$\mathrm{V}_{3}=4$	
		D_{1}	D_{2}	D_{3}	Supply
$\mathrm{U}_{1}=0$	S_{1}	$\frac{-\quad 10}{25}$	$\rightarrow \stackrel{\mathbf{7}}{\mathbf{1 5}}$	$\begin{array}{r} 8 \\ \delta_{13}=-4 \end{array}$	40
$\mathrm{U}_{2}=5$	$\mathbf{S}_{\mathbf{2}}$	$\begin{array}{r} 15 \\ \delta_{21}=0 \end{array}$	$\checkmark \frac{-12}{0}$	$\xrightarrow{+} \mathbf{9}$	15
$\mathrm{U}_{3}=1$	S 3	$\begin{array}{r} 7 \\ \delta_{31}=4 \end{array}$	40^{8}	$\delta_{31}=-7$	40
$\mathrm{U}_{4}=-4$	S_{4} (Dummy)	$\begin{array}{ll} +4 \\ \delta_{41}=6 \end{array}$	$\begin{array}{r} \mathbf{0} \\ \delta_{42}=3 \end{array}$	$\begin{gathered} \nabla-\mathbf{0} \\ 5 \end{gathered}$	5
	Demand	25	55	20	

Here, the number of allocated cells $=6$ is equal to $m+n-1=3+4-1=6$
$\theta=0$ Subtract from all (-) and Add it to all (+).

		$\begin{aligned} & \hline \mathrm{V}_{1}=0 \\ & \hline \mathrm{D}_{1} \end{aligned}$	$\begin{aligned} & \hline V_{2}=-3 \\ & \hline D_{2} \end{aligned}$	$\begin{aligned} & \hline V_{3}=0 \\ & \hline D_{3} \end{aligned}$	Supply
	Destination Sources				
$\mathrm{U}_{1}=10$	S_{1}	$-\quad 10$	$\begin{aligned} & +7 \\ & \hline 15 \end{aligned}$	$\begin{array}{r} 8 \\ \delta_{13}=2 \end{array}$	40
$\mathrm{U}_{2}=9$	S_{2}	$\begin{array}{r} 15 \\ \delta_{21}=-6 \end{array}$	$\delta_{22}=-6$	$\begin{array}{r} 9 \\ 15 \end{array}$	15
$\mathrm{U}_{3}=11$	S_{3}	$\begin{aligned} & +\quad 7 \\ & \delta_{31}=4 \end{aligned}$	$-{ }_{40}{ }^{7}$	$\delta_{31}=-12$	40
$\mathrm{U}_{4}=0$	S_{4} (Dummy)	$\begin{array}{ll} & \mathbf{0} \\ 0 & \\ \hline \end{array}$	$\begin{array}{r} \mathbf{0} \\ \delta_{42}=-3 \end{array}$	50	5
	Demand	25	55	20	

$\theta=25$ Subtract 15 from all (-) and Add it to all (+).

