Confidence Interval and Hypothesis Testing: Exercises and Solutions

You can use the graphical representation of the normal distribution to solve the problems.

Exercise 1: Confidence Interval

A machine is set up such that the average content of juice per bottle equals μ.
A sample of 100 bottles yields an average content of 48 cl .
Calculate a 90% and a 95% confidence interval for the average content.
Assume that the population standard deviation $\sigma=5 \mathrm{cl}$.

Exercise 2: Sample size

What sample size is required to estimate the average contents to within 0.5 cl at the 95% confidence level? ($=+$ or -0.5 cl)

Assume that the population standard deviation $\sigma=5 \mathrm{cl}$.

Exercise 3: Hypothesis Testing

A machine is set up such that the average content of juice per bottle equals μ. A sample of 36 bottles yields an average content of 48.5 cl . Test the hypothesis that the average content per bottle is 50 cl at the 5\% significance level.

Assume that the population standard deviation $\sigma=5 \mathrm{cl}$.

Exercise 4: The impact of sample size

A machine is set up such that the average content of juice per bottle equals μ. A sample of 100 bottles yields an average content of 48.8 cl .
Test the hypothesis that the average content per bottle is 50 cl at the 5% significance level.

Compare the conclusion to that based on the 36 bottles sample.
Assume that the population standard deviation $\sigma=5 \mathrm{cl}$

Exercise 5: One-tailed tests

A machine is set up such that the average content of juice per bottle equals μ. A sample of 36 bottles yields an average content of 48.5 cl .
Can you reject the hypothesis that the average content per bottle is less than or equal to 45 cl in favour of the alternative that it exceeds 45 cl (5% significance level)?

Assume that the population standard deviation $\sigma=5 \mathrm{cl}$.

Exercise 6: Formulating H0

The manager claims that the average content of juice per bottle is less than 50 cl . The machine operator disagrees. A sample of 100 bottles yields an average content of 49 cl per bottle.

Does this sample allow the manager to claim he is right (5\% significance level)?
Assume that the population standard deviation $\sigma=5 \mathrm{cl}$.

Exercise 7: CI for proportions

Sample of 80 customers
60 reply they are satisfied with the service they received
Calculate a 95\% confidence interval for the proportion of satisfied customers
Observed value p (from the sample):
Standard deviation of p :
Distribution of p :
95\% confidence interval for the true proportion p

Exercise 8: Confidence level of interval

The latest poll (1,100 respondents) reveals that 54% of the population supports the government's budgetary decisions. The margin of error is $\pm 3 \%$.
$==>$ Point estimate: 54%
Margin of error: $\pm 3 \%$
$==>$ Confidence interval: [51\%, 57\%]
Observed value p (from the sample):
Standard deviation of p :
Confidence level of interval:

Solution 1

$\bar{x}=48$
$\mathrm{n}=100$
$\sigma=5$
$=\Rightarrow \operatorname{SD}(\bar{x})=\sigma / \sqrt{ } \mathrm{n}=5 / \sqrt{ } 100=5 / 10=0.50$
$=\Rightarrow \quad 90 \%$ confidence interval: $\quad[\bar{x}-1.64 \mathrm{SD}(\bar{x}), \bar{x}+1.64 \mathrm{SD}(\bar{x})]$ $=[48-0.82,48+0.82]=[47.18,48.82]$

95\% confidence interval: $\quad[\bar{x}-1.96 \mathrm{SD}(\bar{x}), \bar{x}+1.96 \mathrm{SD}(\bar{x})]$

$$
=[48-0.98,48+0.98]=[47.02,48.98]
$$

Note: 95% confidence interval: It is common practice to round 1.96 up to 2

$$
\begin{aligned}
& {[\bar{x}-2 \operatorname{SD}(\bar{x}), \bar{x}+2 \operatorname{SD}(\bar{x})]} \\
& =[48-1,48+1]=[47,49]
\end{aligned}
$$

Solution 2

$\mathrm{SD}(\bar{x})=\sigma / \sqrt{ } \mathrm{n}=5 / \sqrt{ } \mathrm{n}$
$2 \mathrm{SD}(\bar{x})=0.5$
$==>\quad 2 * 5 / \sqrt{n}=0.5$
$=\Rightarrow \quad 10=0.5 \sqrt{ } \mathrm{n}$
$=\Rightarrow \quad 20=\sqrt{ }$ n
$=\Rightarrow \quad \mathrm{n}=400$

Solution 3

$\mathrm{SD}(\bar{x})=5 / \sqrt{36}=.83==>2 \mathrm{SD}(\bar{x})=1.66$
$==>\quad$ Acceptance region $=[\mu-2 \operatorname{SD}(\bar{x}), \mu+2 \operatorname{sd}(\bar{x})]$

$$
=[48.34,51.66]
$$

and. . . $\bar{x}=48.5$
$==>$ cannot reject hypothesis $\mu=50$

Solution 4

$\mathrm{SD}(\bar{x})=5 / \sqrt{ } 100=.50==>2 \mathrm{SD}(\bar{x})=1$
$==>\quad$ Acceptance region $=[\mu-2 \operatorname{SD}(\bar{x}), \mu+2 \operatorname{sd}(\bar{x})]=[49,51]$
$\mathrm{xb}=48.8$
$==>$ Reject hypothesis $\mu=5$
(if $\mu=50$ is true, we have 95% ch to have \bar{x} between 49 and $51 \ldots$)

Or,
(50-48.8)/0.5 1.2/0.5=2.4>2
$==>$ Reject H 0
// Previous case

Here: reject $\mu=50$ on basis of observing 48.8
Before: not reject $\mu=50$ despite observing 48.5

Solution 5

$\mathrm{SD}(\bar{x})=5 / \sqrt{ } 36=.83$
One-tailed test, 5% significance level $==>5 \%$ in right tail
$==>1.64$ standard deviations
$=\Rightarrow$ Acceptance region $=[-\infty, \mu+1.64 \operatorname{sd}(\mathrm{xb})]=[-\infty, 45+1.64 * 0.83]=[-\infty, 46.36]$

$$
\bar{x}=48.5
$$

$==>$ Reject hypothesis $\mathrm{H} 0: \mu \leq 45$ in favour of $\mathrm{H} 1: ~ \mu>45$
Note: z-score: $(48.5-45) / 0.83=4.2>1.64==>$ Reject

Solution 6

Objective of manager: show that $\mu<50$
$==>$ Need to reject : $\mu \geq 50$ (remember:: Cannot 'prove' a hypothesis, only 'disprove' i.e. reject)
$==>\mathrm{H} 0: \mu \geq 50$
H0: $\mu \geq 50$
H1: $\mu<50$
$==>1$-tailed test!
$==>5 \%$ in 1 tail $==>1.64 \mathrm{SD}(\bar{x})$
$\mathrm{SD}(\mathrm{xb})=5 / \sqrt{ } 100=.50==>1.64 \mathrm{SD}(\bar{x})=0.82$
$==>$ Acceptance region $=[\mathrm{m}-1.64 \mathrm{SD}(\bar{x}), \infty]=[49.18, \infty]$
$\mathrm{xb}=49$
$==>$ Reject hypothesis $\mu \geq 50$
Or,
$(49-50) / 0.5=-2<-1.64$
$==>$ Reject H0

Solution 7

Observed value $\hat{p}: 60 / 80=0.75=75 \%$
Standard deviation of \hat{p} :
p unknown $==>$ use p^{\wedge} instead
Proportion of satisfied customers: $\operatorname{Var}(\mathrm{X} / \mathrm{n})=\operatorname{Var}(\mathrm{X}) / \mathrm{n}^{2}=\hat{p}(1-\hat{p}) / \mathrm{n}=0.0023$
$=\Rightarrow \mathrm{N}(\hat{p}, \sqrt{ }(\hat{p}(1-\hat{p}) / \mathrm{n})=\mathrm{N}(0.75,0.048)$
Distribution of \hat{p}

Satisfied or not with probability p, independent opinions ==> Binomial Approximation of Binomial by Normal distribution: required conditions $\mathrm{n} \hat{p}=60>5, \mathrm{n}(1-\hat{p})=20>5,0.1<\hat{p}=0.75<0.9==>$ OK
95% Confidence interval for the true proportion p :
$[\hat{p}-2 \sqrt{ } \hat{p}(1-\hat{p}) / \mathrm{n}, \hat{p}+2 \sqrt{ } \hat{p}(1-\hat{p}) / \mathrm{n}]$
$=[0.75-2 * 0.048,0.75+2 * 0.048]=[0.654,0.846]$

Solution 8

Observed value $\hat{p}: 0.54$
Standard deviation of $\hat{p}: \sqrt{ } \hat{p}(1-\hat{p}) / \mathrm{n}=.54^{*} .46 / 1,100=0.015$
$==>$ "error margin of $\pm 3 \%$ " corresponds to $\approx 2 \mathrm{SD}(\hat{p})$
$=>95 \%$ confidence level $(3 \% / 1.5 \%=2 \ldots$ and The critical value 2 corresponds to a 95% CI)

