Name:
 ID:
 Section:
 Signature:

Note: Attempt all the five questions. Scientific calculators are not allowed!

Question 1 [Marks: 10×1]:

Choose the correct answer:
(i) If the matrix $A=\left[\begin{array}{rrr}0 & 2 & -1 \\ -2 & 0 & -4 \\ 1 & -\delta & 0\end{array}\right]$ satisfies the condition $-A=A^{t}$ (here, A^{t} denotes the transpose of A), then δ is equal to:
(a) 0
(b) -4
(c) -2
(d) 4 .
(ii) If A and B are 3×3 matrices with $|A|=-1$ and $\left|3 A^{2} B A^{-1}\right|=-54$, then $|B|$ is equal to:
(a) 18
(b) -18
(c) -2
(d) 2 .
(iii) If $|3 A|=-2$, then the reduced row echelon form of A must be equal to:
(a) $3 \mathbf{I}$
(b) $2 \mathbf{I}$
(c) $\frac{1}{3} \mathrm{I}$
(d) I.
(iv) Let F denote the set of all solutions of the linear system $A X=O$, where the matrix of A is invertible and $X \in \mathbb{R}^{3}$. Then, F is equal to:
(a) \mathbb{R}^{3}
(b) $\}$
(c) $\{(0,0.0)\}$
(d) $\mathbb{R}^{3}-\{(0,0,0)\}$.
(v) If the vectors $(1,2,1),(2,5,3)$ and $(-1,-4, h)$ are linearly dependent in \mathbb{R}^{3}, then h is equal to:
(a) 5
(b) -3
(c) -5
(d) 3
(vi) If $W=\operatorname{span}\{(1,1,1),(-2,-2,-2)\}$, then $\operatorname{dim}(W)$ is equal to:
(a) 2
(b) -1
(c) 0
(d) 1 .
(vii) If $B=\{(-2,4),(3,-5)\}$ is an ordered basis of the vector space \mathbb{R}^{2}, then the coordinate vector $[(1,3)]_{B}$ is equal to:
(a) $\left[\begin{array}{l}1 \\ 3\end{array}\right]$
(b) $\left[\begin{array}{c}1 \\ -1\end{array}\right]$
(c) $\left[\begin{array}{l}7 \\ 5\end{array}\right]$
(d) $\left[\begin{array}{l}5 \\ 7\end{array}\right]$.
(viii) If the inner product on the vector space P_{2} of polynomials with degree ≤ 2 is defined by $\langle p, q\rangle=a_{0} b_{0}+a_{1} b_{1}+a_{2} b_{2}$ for all $p=a_{0}+a_{1} x+a_{2} x^{2}, q=b_{0}+b_{1} x+b_{2} x^{2} \in P_{2}$, then the distance between the polynomials $2-3 x^{2}$ and $1-x+x^{2}$ is equal to:
(a) 1
(b) $3 \sqrt{2}$
(c) 0
(d) $2 \sqrt{3}$.
(ix) If $T: P_{2} \rightarrow P_{3}$ is the linear transformation defined by $T(p(x))=x p(x)$, then which of the following polynomial is in $\operatorname{Im}(T)$?
(a) $3-x^{2}$
(b) $1+x^{3}$
(c) $3 x-x^{2}$
(d) $3 x-x^{4}$.
(x) If $A=\left[\begin{array}{cc}0 & -1 \\ -4 & 0\end{array}\right]$, then the matrix A is:
(a) diagonalizable
(b) symmetric
(c) not diagonalizable (d) not invertible.

Question 2 [Marks: $2+3+1]$: : Let A be a matrix with $R R E F(A)=\left[\begin{array}{cccccc}1 & 1 & 0 & -3 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$. Then:
(a) Find $\operatorname{rank}(A)$ and nullity (A).
(b) Find a basis for the row space $\operatorname{row}(A)$ and the null space $N(A)$.
(c) Show whether or not the linear system $A X=b$ has a solution for all $b \in \mathbb{R}^{5}$.

Question 3 [Marks: 4+5]:
(a) Let $\boldsymbol{A}=\{(1,0,3),(1,1,0),(2,2,-3)\}$ and $\boldsymbol{B}=\{(1,0,0),(0,1,0),(0,0,1)\}$ be given ordered bases for the vector space \mathbf{R}^{3}. Then construct the change of basis matrix ${ }_{A} \mathbf{P}_{B}$ and then use it to find the coordinate vector $[v]_{A}$ of $v=(3 .-2.1)$.
(b) Let $E=\left\{u_{1}=(1,1,1), u_{2}=(-1,1,0), u_{3}=(1,2,1)\right\}$. Find an orthonormal basis for the Euclidean space \mathbb{R}^{3} by applying the Gram-Schmidt algorithm on E.

Question 4: [Marks: $2+3+2$]
Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation given by:

$$
T(1,0,3)=(2,-1,3), T(0,1,0)=(1,0,2), \text { and } T(0,0,2)=(4,0,-2)
$$

(a) Find the standard matrix for the transformation T.
(b) Find $\operatorname{dim}(\operatorname{ker}(T))$ and $\operatorname{dim}(\operatorname{Im}(T))$.
(c) Find $T(1,2,3)$ by using the standard matrix of T.

Question 5: [Marks: 3+3+2]
Let $A=\left[\begin{array}{ccc}2 & 0 & 1 \\ 0 & 1 & 0 \\ -3 & 0 & -2\end{array}\right]$. Then:
(a) Show that the matrix A is diagonalizable.
(b) Find an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix.
(c) Compute the matrix A^{2024}.

