KING SAUD UNIVERSITY DEPARTMENT OF MATHEMATICS

TIME: 3H, FULL MARKS: 40, SI /29/04/1441 MATH 204
Question 1. $[4,4]$ a) A boy with a thermometer in his pocket reading $40^{\circ} \mathrm{C}$ falls in a swimming pool whose temperature is maintained at $30^{\circ} \mathrm{C}$. If after 1 minute the thermometer reads $32^{\circ} \mathrm{C}$, what will be the reading after 3 minutes.
b) Find the general solution of the differential equation

$$
(4 x \sin y+6) d x+\left(x^{2} \cos y\right) d y=0, x>0
$$

Question 2. a) $[4,5]$. Solve the initial value problem

$$
y^{\prime}=\frac{(y-2 x+1)^{2}}{y-2 x}, y(0)=4 \sqrt{3}
$$

b) Find an interval I for which the following initial value problem has a unique solution

$$
\left(4-x^{2}\right) y^{\prime \prime}+\frac{x}{\sqrt{x+1}} y^{\prime}+y \ln \left(1-\frac{x}{4}\right)=0, y(0)=1, y^{\prime}(0)=0
$$

Question 3. a) $[4,4]$. Use undetermined coefficients method to solve the differential equation

$$
y^{\prime \prime}-y^{\prime}-2 y=4 e^{3 x}+5 \sin x
$$

b) Solve the differential equation

$$
y^{\prime \prime}-6 y^{\prime}+9 y=\frac{e^{3 x}}{1+x}
$$

Question 4 [5]. Use power series method to find the power series solution about the ordinary point $x_{0}=0$ for the differential equation

$$
(x-1) y^{\prime \prime}-x y^{\prime}+y=0 .
$$

Question 5. a) $[\mathbf{5}, \mathbf{5}]$. Let $f(x)$ be a 2π-periodic function defined by:

$$
f(x)=\left\{\begin{array}{lr}
1, & -\pi<x<-\frac{\pi}{2}, \\
0, & \frac{\pi}{2}<x<\pi \\
0, & |x| \leq \frac{\pi}{2}
\end{array}\right.
$$

Sketch the graph of f, find its Fourier Series, and deduce that

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}=\frac{\pi}{4}
$$

b) Consider the function

$$
f(x)=\left\{\begin{array}{cc}
x, & |x| \leq 1 \\
0, & |x|>1
\end{array}\right.
$$

Sketch the graph of f, find its Fourier integral and deduce the value of the integral

$$
\int_{0}^{\infty} \frac{2 \sin ^{2} \lambda-\lambda \sin (2 \lambda)}{\lambda^{2}} d \lambda
$$

