On some m-symmetric generalized hypergeometric d-orthogonal polynomials

Mongi Blel ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, College of Science,King Saud University, Riyadh 11451, BP 2455

Abstract

In [9] I. Lamiri and M.Ouni state some characterization theorems for d-orthogonal polynomials of Hermite, Gould-Hopper and Charlier type polynomials. In [3] Y.Ben Cheikh I. Lamiri and M.Ouni give a characterization theorem for some classes of generalized hypergeometric polynomials containing for example, Gegenbauer polynomials, Gould-Hopper polynomials, Humbert polynomials, a generalization of Laguerre polynomials and a generalization of Charlier polynomials. In this work, we introduce a new class \mathcal{D} of generalized hypergeometric m-symmetric polynomial sequence containing the Hermite polynomial sequence and Laguerre polynomial sequence. Then we consider a characterization problem consisting in finding the d-orthogonal polynomial sequences in the class $\mathcal{D}, m \leq d$. The solution provides new d-orthogonal polynomial sequences to be classified in d-Askey-scheme and also having a m-symmetry property with $m \leq d$. This class contains the Gould-Hopper polynomial sequence, the class considered by Ben Cheikh-Douak, the class considered in [3]. This class contains new d-orthogonal polynomial sequences not belonging to the class \mathcal{A}. We derive also in this work the d-dimensional functional vectors ensuring the d-orthogonality of these polynomials. We also give an explicit expression of the d-dimensional functional vector.

1. Introduction and Main Results

To state our problem, we need to recall the meaning of the three keywords of the title.
The generalized hypergeometric functions ${ }_{p} F_{q}(z)$ with p numerator and q denominator parameters are defined by ([Luke], for instance)

$$
{ }_{p} F_{q}\binom{\left(a_{p}\right) ;}{\left(b_{q}\right) ;}:=\sum_{m=0}^{\infty} \frac{\left[a_{p}\right]_{m}}{\left[b_{q}\right]_{m}} \frac{z^{m}}{m!},
$$

where $\left(a_{p}\right)$ designates the set $\left\{a_{1}, a_{2}, \ldots, a_{p}\right\},\left[a_{r}\right]_{p}=\prod_{i=1}^{r}\left(a_{i}\right)_{p}$ and $(a)_{p}=\frac{\Gamma(a+p)}{\Gamma(a)} . z$ being a complex variable.

Definition 1.1.

A generalized hypergeometric function ${ }_{p} F_{q}$ is reduced to a polynomial called generalized hypergeometric polynomial if r numerator parameters take the form: $\Delta(r,-n)$ where $\Delta(r, \alpha)$ abbreviates the array of r parameters: $\frac{\alpha+j-1}{r} ; j=1, \ldots, r$.

[^0]The notion of d-orthogonality was introduced by Van Iseghem [6] and completed by Maroni [10] as follows. Let \mathscr{P} be the vector space of polynomials with coefficients in \mathbb{C} and \mathscr{P}^{\prime} its dual. A polynomial sequence $\left\{P_{n}\right\}_{n \geq 0}$ in \mathscr{P} is called a polynomial set (PS, for shorter) if $\operatorname{deg} P_{n}=n$ for all integer n. We denote by $\langle u, f\rangle$ the effect of the linear functional $u \in \mathscr{P}^{\prime}$ on the polynomial $f \in \mathscr{P}$.

Definition 1.2.

Let d be a positive integer and let $\left\{P_{n}\right\}_{n \geq 0}$ be a PS in \mathscr{P}. $\left\{P_{n}\right\}_{n \geq 0}$ is called a d-orthogonal polynomial set (d-OPS, for shorter) with respect to the d-dimensional functional vector $\Gamma={ }^{t}\left(\Gamma_{0}, \Gamma_{1}, \ldots, \Gamma_{d-1}\right)$ if it satisfies the following conditions:

$$
\left\{\begin{array}{l}
\left\langle\Gamma_{k}, P_{m} P_{n}\right\rangle=0, m>n d+k, n \geq 0, \\
\left\langle\Gamma_{k}, P_{n} P_{n d+k}\right\rangle \neq 0, n \geq 0,
\end{array}\right.
$$

for each integer $k \in\{0,1, \ldots, d-1\}$.
For the particular case: $d=1$, we meet the well known notion of orthogonality [5].
Definition 1.3.
Let m be a positive integer. A PS $\left\{P_{n}\right\}_{n}$ is called m-symmetric if
$P_{n}(w x)=w^{n} P_{n}(x)$ for all n, where $w=\exp \left(\frac{2 i \pi}{m+1}\right)$.
For the particular case: $m=1$, we get the symmetric PS [5]. We refer the reader to [4] for more properties of m-symmetric d-OPS.
The Askey-scheme contains orthogonal polynomials having generalized hypergeometric representations. Recently, some works [Ben Cheikh, Douak, Lamiri, Ouni, Zaghouani,] provided some generalizations of these polynomials. That may be used to look for a similar table to Askey-scheme in the context of the d-orthogonality notion, for which, we refer by d-Askey-scheme.
Ben Cheikh, Lamiri and Ouni [3] defined a general class of hypergeometric polynomials \mathcal{A} containing all OPSs in Askey-scheme and found all d-OPSs in \mathcal{A}. Among them, we meet d-OPSs generalizing in a natural way all the OPSs in Askey-scheme. The other ones are defined only for $d \geq 2$. The authors showed that the possibility to obtain further generalized hypergeometric d-OPSs not belonging to \mathcal{A} by solving characterization problems for special classes of generalized hypergeometric polynomials suggested by suitable transformations of generalized hypergeometric functions. That was done for a class \mathcal{B} containing Gegenbauer PS and a class C containing Charlier PS.
The only m-symmetric d-OPSs in $\mathcal{A} \cup \mathcal{B} \cup C$ are the Humbert PS and Gould-Hopper PS which are d-symmetric. That are reduced respectively to Gegenbauer PS and Hermite PS for $d=1$.
In this work, we introduce a further class \mathcal{D} of generalized hypergeometric m-symmetric PSs containing the Hermite PS and Laguerre PS. Then we consider a characterization problem consisting in finding all d-OPSs in $\mathcal{D}, m \leq d$. The solution provides new d-OPSs to be classified in d-Askey-scheme and also having a m-symmetry property with $m \leq d$.

This paper is organized as follows: In Section 2, we introduce a new class of \mathcal{D} of generalized hypergeometric m-symmetric polynomial sequences and we prove the main result 2.1 which consists in characterizing all d-orthogonal polynomial sequences in the class \mathcal{D}. We prove that the only d-orthogonal polynomial sequences in this class are those considered by Ben Cheikh and Blel [1]. The last section is devoted to give the dual sequence of the sequence $\left\{P_{n}\right\}_{n}$ and the dual sequences of the components.

Our analysis is based on a recurrent relation of order d of type

$$
x P_{n}(x)=\beta_{n+1} P_{n+1}(x)+\sum_{k=0}^{d} \alpha_{k, n-d+k} P_{n-d+k}(x),
$$

where $\beta_{n+1} \alpha_{0, n-d} \neq 0$, which characterizes the d-orthogonality of the polynomial set $\left\{P_{n}\right\}_{n}$. In the literature there are many polynomial sets satisfying recurrent relations of height order not necessarily satisfying the d-orthogonality property. We cite for instance $[8,12,14-16]$.
We refer the reader to [13], where the author treats extensively various aspects of the classical orthogonal polynomials, hypergeometric functions and hypergeometric polynomials.

2. Main Result

2.1. Introduction to the class \mathcal{D}

In [1], the authors introduce a family of generalized hypergeometric m-symmetric d-orthogonal polynomials, $\left\{P_{n}\right\}_{n}$ defined by:

$$
P_{n}(x):=x^{n}{ }_{(m+1)(r+1)+p} F_{q}\left(\begin{array}{cc}
\Delta(m+1,-n),\left(\Delta\left(m+1,-n-v \alpha_{r}\right)\right) ; & \tag{1}\\
; & \left(\frac{1}{x}\right)^{m+1}
\end{array}\right)
$$

This family gives a generalized hypergeometric representation of Hermite polynomials and Laguerre polynomials [7]. Indeed

$$
H_{n}(x)=P_{n}(1,0,-; x) \quad \text { and } \quad L_{n}^{(\alpha)}(x)=\frac{1}{n!} P_{n}(0,1, \alpha ; x)
$$

where

$$
H_{n}(x)=x^{n}{ }_{2} F_{0}\left(\begin{array}{cc}
\frac{-n}{2}, \frac{-n+1}{2}, & \\
-, & -\frac{4}{x^{2}}
\end{array}\right)
$$

and

$$
L_{n}^{(\alpha)}(x)=\frac{(\alpha+1)_{n}}{n!}{ }_{1} F_{1}\left(\begin{array}{cc}
-n, & x \\
\alpha+1, &)=\frac{x^{n}}{n!}{ }_{2} F_{0}\left(\begin{array}{cc}
-n,-n-\alpha, & \\
-, & -\frac{1}{x}
\end{array}\right) . . . ~ . ~
\end{array}\right.
$$

This suggests to introduce a new class of m-symmetric generalized hypergeometric polynomials defined as follows:
Let d be a positive integer and $I_{d}=\left\{(m, r) \in \mathbb{N}^{2} ;(m+1)(r+1)=d+1\right\}$. For $(m, r) \in I_{d}$ we define the set $\mathcal{D}_{m, r}$ of polynomials defined by

$$
P_{n}\left(m, r, p, q,\left(\alpha_{r}\right),\left(a_{p}\right),\left(b_{q}\right) ; x\right):=x^{n}{ }_{(m+1)(r+1)+p} F_{q}\left(\begin{array}{cc}
\Delta(m+1,-n),\left(\Delta\left(m+1,-n-\alpha_{r}\right)\right),\left(a_{p}\right) ; \\
\left(b_{q}\right) ; & \left(\frac{1}{x}\right)^{m+1}
\end{array}\right)
$$

Set $\mathcal{D}^{(d)}=\bigcup_{(m, r) \in I_{d}} \mathcal{D}_{m, r}$.
If $d+1$ is a prime number $\mathcal{D}^{(d)}=\mathcal{D}_{d, 0} \cup \mathcal{D}_{0, d}$. For example

$$
\begin{gathered}
\mathcal{D}^{(3)}=\mathcal{D}_{3,0} \cup \mathcal{D}_{1,1} \cup \mathcal{D}_{0,3} . \\
\mathcal{D}^{(5)}=\mathcal{D}_{5,0} \cup \mathcal{D}_{3,2} \cup \mathcal{D}_{2,3} \cup \mathcal{D}_{0,5} .
\end{gathered}
$$

It is easy to verify that the class \mathcal{D} contains the following PS $\left\{Q_{n}\right\}_{n \geq 0}$ defined by the generating function (cf [4]):

$$
e^{t^{m+1}}{ }_{0} F_{r}\left(\begin{array}{cc}
- & -x t \\
\alpha_{1}+1, \ldots, \alpha_{r}+1 &
\end{array}\right)=\sum_{n=0}^{\infty} Q_{n}(x) t^{n}
$$

In fact, we need the following identity [Srivastava-Manocha ([11]) p. 100]:

$$
\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} A(k, n)=\sum_{n=0}^{\infty} \sum_{k=0}^{n} A(k, n-k)
$$

to prove that

$$
\begin{aligned}
e^{t^{m+1}}{ }_{0} F_{r}\left(\begin{array}{c}
- \\
\alpha_{1}+1, \ldots, \alpha_{r}+1
\end{array}-x t\right) & =\sum_{k=0}^{\infty} \frac{t^{k(m+1)}}{k!} \sum_{n=0}^{\infty} \frac{(-x t)^{n}}{\left(\alpha_{1}+1\right)_{n} \cdots\left(\alpha_{r}+1\right)_{n} n!} \\
& =\sum_{n=0}^{\infty} \sum_{j=0}^{\left[\frac{n}{m+1}\right]} \frac{(-x)^{n-(m+1) j}}{j!(n-(m+1) j)!\left(\alpha_{1}+1\right)_{n-(m+1) j} \cdots\left(\alpha_{r}+1\right)_{n-(m+1) j}} t^{n}
\end{aligned}
$$

From which we deduce that

$$
Q_{n}(x)=\sum_{j=0}^{\left[\frac{n}{m+1}\right]} \frac{(-x)^{n-(m+1) j}}{j!(n-(m+1) j)!\prod_{s=1}^{r}\left(1+\alpha_{s}\right)_{n-(m+1) j}}
$$

Using the Definition 1.1 and the following identities [See Srivastava-Manocha Book ([11]), p.22-23, for instance]:

$$
\begin{gathered}
(\lambda)_{m n}=m^{m n} \prod_{i=1}^{m}\left(\frac{\lambda+i-1}{m}\right)_{n}, \quad \forall n \in \mathbb{N} \cup\{0\}, \\
(\lambda)_{n}=(\lambda)_{k}(\lambda+k)_{n-k}, \quad(n-k)!=\frac{(-1)^{k} n!}{(-n)_{k}}, \quad \forall 0 \leq k \leq n
\end{gathered}
$$

and $(-n)_{k}=0$, for $k>n$.
We obtain

$$
Q_{n}(x)=C_{n} x^{n}{ }_{(m+1)(r+1)} F_{0}\left(\begin{array}{cc}
\Delta(m+1,-n),\left(\Delta\left(m+1,-n-\alpha_{r}\right)\right) ; & \left(\frac{C}{x}\right)^{m+1} \\
-; &
\end{array}\right)
$$

where

$$
C_{n}=\frac{(-1)^{n}}{n!\prod_{i=1}^{r}\left(\alpha_{i}+1\right)_{n}} \quad \text { and } \quad C=(-1)^{r}(m+1)^{(r+1)}
$$

Then

$$
\begin{align*}
& Q_{n}(x)=\frac{(-1)^{n(r+1)}(m+1)^{n(r+1)}}{n!\prod_{i=1}^{r}\left(\alpha_{i}+1\right)_{n}} P_{n}\left(\frac{(-1)^{r} x}{(m+1)^{r+1}}\right) \tag{2}\\
& P_{n}(x)=\frac{(-1)^{n(r+1)} n!\prod_{i=1}^{r}\left(\alpha_{i}+1\right)_{n}}{(m+1)^{n(r+1)}} Q_{n}\left((-1)^{r}(m+1)^{r+1} x\right) \tag{3}
\end{align*}
$$

2.2. Characterization Theorem

Ben Cheikh and Douak [2] showed that the PS $\left\{Q_{n}\right\}_{n \geq 0}$ is $((m+1)(r+1)-1)$-orthogonal. It contains the particular cases of the Gould-Hopper PS $(r=0)$ and Ben Cheikh-Douak PS $(m=0)$ which also belongs to the class \mathcal{A} considered in [3]. It appears that the class \mathcal{D} contains new d-OPSs not belonging to \mathcal{A}. It is significant to put the following problem: find all d-OPS in $\mathcal{D}_{m, r}$. The case $\mathcal{D}_{d, 0}$ was considered by Lamiri Ouni and the case $\mathcal{D}_{0, d}$ was considered by Ben Cheikh, Douak and Ben Cheikh, Ouni. We state the following

Theorem 2.1.

The only $d-O P s$ in $\mathcal{D}_{m, r}$ are the polynomials (1).

Proof

Let $\left\{P_{n}\right\}_{n}$ be a sequence in the class \mathcal{D},

$$
\begin{align*}
P_{n}(x) & :=x^{n}{ }_{(m+1)(r+1)+p} F_{q}\left(\begin{array}{cc}
\Delta(m+1,-n),\left(\Delta\left(m+1,-n-\alpha_{r}\right)\right),\left(a_{p}\right) ; \\
\left(b_{q}\right) ; & \left(\frac{1}{x}\right)^{m+1}
\end{array}\right) \\
& =\sum_{k=0}^{\left[\frac{n}{m+1}\right]} \gamma_{n}(k) x^{n-k(m+1)} . \tag{4}
\end{align*}
$$

The sequence $\left\{P_{n}\right\}_{n}$ is m-symmetric, then according to the notations in [4], if the sequence is d-OPS, then they satisfy a $d+1$-order recurrence relation of type:

$$
X P_{n}=\sum_{j=0}^{d_{1}} \alpha_{j}(n) P_{n-j(m+1)+1}
$$

with $\alpha_{d_{1}}(n) \neq 0, \alpha_{0}(n)=1$ and $d+1=d_{1}(m+1)$. Then

$$
\begin{aligned}
\sum_{k=0}^{\left[\frac{n}{m+1}\right]} \gamma_{n}(k) x^{n+1-k(m+1)} & =\sum_{j=0}^{d_{1}} \alpha_{j}(n) \sum_{k=0}^{\left[\frac{n+1}{m+1}\right]-j} \gamma_{n+1-j(m+1)}(k) x^{n+1-(j+k)(m+1)} \\
& =\sum_{j=0}^{d_{1}} \alpha_{j}(n) \sum_{k=j}^{\left[\frac{n+1}{m+1}\right]} \gamma_{n+1-j(m+1)}(k-j) x^{n+1-k(m+1)} \\
& =\sum_{k=0}^{\left[\frac{n+1}{m+1}\right]}\left(\sum_{j=0}^{\inf \left(k, d_{1}\right)} \alpha_{j}(n) \gamma_{n+1-j(m+1)}(k-j)\right) x^{n+1-k(m+1)}
\end{aligned}
$$

It follows that if $n+1=\ell(m+1)$,

$$
\sum_{j=0}^{\inf \left(\ell, d_{1}\right)} \alpha_{j}(n) \gamma_{n+1-j(m+1)}(\ell-j)=0
$$

In what follows, we assume that $n+1 \not \equiv 0[m+1]$, then

$$
\begin{equation*}
\gamma_{n}(k)=\sum_{j=0}^{\inf \left(k, d_{1}\right)} \alpha_{j}(n) \gamma_{n+1-j(m+1)}(k-j) \tag{5}
\end{equation*}
$$

We derive from (4) that

$$
\begin{align*}
\gamma_{n}(k)= & \frac{\left[a_{p}\right]_{k} \Delta(m+1,-n)_{k} \prod_{j=1}^{r} \Delta\left(m+1,-n-\alpha_{j}\right)_{k}}{k!\left[b_{q}\right]_{k}} \tag{6}\\
= & \frac{\left[a_{p}\right]_{k-d_{1}}\left[a_{p}+k-d_{1}\right]_{d_{1}} n!\prod_{s=1}^{r}\left(1+\alpha_{s}\right)_{n}}{\left[b_{q}\right]_{k-d_{1}}\left[b_{q}+k-d_{1}\right]_{d_{1}}\left(k-d_{1}\right)!\left(k-d_{1}+1\right)_{d_{1}}} \\
& \cdot \frac{(-1)^{k(r+1)(m+1)}}{(m+1)^{k(r+1)(m+1)}(n-k(m+1))!\prod_{s=1}^{r}\left(1+\alpha_{s}\right)_{n-k(m+1)}}
\end{align*}
$$

and

$$
\begin{array}{r}
\gamma_{n+1-j(m+1)}(k-j)=\frac{\left[a_{p}\right]_{k-d_{1}}\left[a_{p}+k-d_{1}\right]_{d_{1}-j}}{\left[b_{q}\right]_{k-d_{1}}\left[b_{q}+k-d_{1}\right]_{d_{1}-j}\left(k-d_{1}\right)!\left(k-d_{1}+1\right)_{d_{1}-j}} \tag{7}\\
\cdot \frac{(-1)^{(k-j)(r+1)(m+1)}(n+1-j(m+1))!\prod_{s=1}^{r}\left(1+\alpha_{s}\right)_{n+1-j(m+1)}}{(n+1-k(m+1))!\prod_{s=1}^{r}\left(1+\alpha_{s}\right)_{n+1-k(m+1)}(m+1)^{(k-j)(r+1)(m+1)}}
\end{array}
$$

In what follows, we take k and n large enough, we derive from the relations (5), (6) and (7) that

$$
\begin{aligned}
& \frac{\left[a_{p}+k-d_{1}\right]_{d_{1}}(n+1+-k(m+1)) \prod_{s=1}^{r}\left(n+1+\alpha_{s}-k(m+1)\right)}{\left[b_{q}+k-d_{1}\right]_{d_{1}}\left(k-d_{1}+1\right)_{d_{1}}(m+1)^{d_{1}(r+1)(m+1)}} \cdot(-1)^{d_{1}(r+1)(m+1)} n!\prod_{s=1}^{r}\left(1+\alpha_{s}\right)_{n} \\
= & \sum_{j=0}^{d_{1}} \alpha_{j}(n) \frac{\left[a_{p}+k-d_{1}\right]_{d_{1}-j}(-1)^{\left(d_{1}-j\right)(r+1)(m+1)}(n+1-j(m+1))!}{\left[b_{q}+k-d_{1}\right]_{d_{1}-j}\left(k-d_{1}+1\right)_{d_{1}-j}(m+1)^{\left(d_{1}-j\right)(r+1)(m+1)}} \cdot \prod_{s=1}^{r}\left(1+\alpha_{s}\right)_{n+1-j(m+1)}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& {\left[a_{p}+k-d_{1}\right]_{d_{1}} n!(n+1-k(m+1)) \prod_{s=1}^{r}\left(n+1+\alpha_{s}-k(m+1)\right) \prod_{s=1}^{r}\left(1+\alpha_{s}\right)_{n} } \\
= & \sum_{j=0}^{d_{1}} \alpha_{j}(n)\left[a_{p}+k-d_{1}\right]_{d_{1}-j}\left[b_{q}+k-j\right]_{j}(k-j+1)_{j}(-1)^{j(r+1)(m+1)} \cdot \prod_{s=0}^{r}\left(1+\alpha_{s}\right)_{n+1-j(m+1)}(m+1)^{j(r+1)(m+1)}
\end{aligned}
$$

Let

$$
R(x)=\left[a_{p}+x-d_{1}\right]_{d_{1}}\left(n+1-x(m+1) n!\prod_{s=1}^{r}\left(1+\alpha_{s}\right)_{n} \prod_{s=1}^{r}\left(n+1+\alpha_{s}-x(m+1)\right)\right.
$$

and $S(x)=\sum_{j=0}^{d_{1}} \alpha_{j}(n)\left[a_{p}+x-d_{1}\right]_{d_{1}-j}\left[b_{q}+x-j\right]_{j}(x-j+1)_{j} A(j, n)$, with
$A(j, n)=(-m-1)^{j(r+1)(m+1)}(n+1-j(m+1))!\prod_{s=1}^{r}\left(1+\alpha_{s}\right)_{n+1-j(m+1)}$.
If we take n and k large enough, we find that the polynomials R and S are equal. Furthermore $\operatorname{deg} R=d_{1} p+1+r$ and $\operatorname{deg} S \leq \max _{0 \leq j \leq d_{1}}\left(p\left(d_{1}-j\right)+j q+j\right)=\max _{0 \leq j \leq d_{1}}\left(p d_{1}+j(q+1-p)\right)$.

- If $q+1-p \leq 0$, then $\operatorname{deg} R=d_{1} p+1+r$ and $\operatorname{deg} S \leq p d_{1}$, which is impossible. It results that $q \geq p$.
- If $p \neq 0$, then $R\left(d_{1}-a_{1}\right)=0$ and $S\left(d_{1}-a_{1}\right) \neq 0$. Hence $p=0$.
- Since $\alpha_{d_{1}}(n) \neq 0$, we get $\operatorname{deg} S=d_{1}(q+1)$, hence $d_{1}(q+1)=1+r$.

We deduce that

$$
R(x)=n!(n+1-x(m+1)) \prod_{s=1}^{r}\left(1+\alpha_{s}\right)_{n} \prod_{s=1}^{r}\left(n+1+\alpha_{s}-x(m+1)\right)
$$

and

$$
S(x)=\sum_{j=0}^{d_{1}} \alpha_{j}(n) A(j, n)\left[b_{q}+x-j\right]_{j}(x-j+1)_{j}
$$

We denote $\alpha_{0}=0$, then for $x=0, R(0)=\prod_{s=0}^{r}\left(1+\alpha_{s}\right)_{n+1}$ and $S(0)=\alpha_{0}(n) \prod_{s=0}^{r}\left(1+\alpha_{s}\right)_{n+1}$, then $\alpha_{0}(n)=1$. Furthermore

$$
\begin{aligned}
R(x)-R(0) & =\prod_{s=0}^{r}\left(1+\alpha_{s}\right)_{n}\left(\prod_{s=0}^{r}\left(n+1+\alpha_{s}-x(m+1)\right)-\prod_{s=0}^{r}\left(n+1+\alpha_{s}\right)\right) \\
& =\sum_{j=1}^{d_{1}} \alpha_{j}(n)\left[b_{q}+x-j\right]_{j}(x-j+1)_{j} A(j, n)
\end{aligned}
$$

If $q \geq 1$ and there exists $b_{j} \neq 1$, we can suppose that $j=1$ and we take $x=1-b_{1}$, then from the relation $(1-j)_{j}=0$, for all $j \geq 1$. Since $\alpha_{d_{1}}(n) \neq 0$, we deduce that

$$
\prod_{s=0}^{r}\left(n+1+\alpha_{s}-\left(1-b_{1}\right)(m+1)\right)=\prod_{s=0}^{r}\left(n+1+\alpha_{s}\right) .
$$

We define the two monic polynomials R_{1} and R_{2} of degree $r+1$ by:

$$
R_{1}(z)=\prod_{s=0}^{r}\left(z+\alpha_{s}-\left(1-b_{1}\right)(m+1)\right), \quad R_{2}(z)=\prod_{s=0}^{r}\left(z+\alpha_{s}\right) .
$$

These two polynomials are equal for $z=n \in \mathbb{N}$ large enough, and $\operatorname{deg} R_{1}=\operatorname{deg} R_{2}=r+1$, this is impossible.
If $b_{j}=1,1 \leq j \leq q$, then 0 is a root of the polynomial S_{1} of order at least $q+1$.

$$
S_{1}(x)=\sum_{j=1}^{d_{1}} \alpha_{j}(n)(x-j+1)_{j}^{q+1} A(j, n)=R(x)-R(0)
$$

On the other hand $\frac{R^{\prime}(x)}{R(x)}=\sum_{j=0}^{r} \frac{1}{n+1+\alpha_{s}-x(m+1)}$, which is non zero for n large enough near 0 . Then $q=0$ and the polynomial P_{n} is equal to

$$
P_{n}(x)=x^{n}{ }_{(m+1)(r+1)} F_{0}\left(\begin{array}{cc}
\Delta(m+1,-n),\left(\Delta\left(m+1,-n-\alpha_{r}\right)\right) ; & \\
-; & \left(\frac{1}{x}\right)^{m+1}
\end{array}\right)
$$

The sequence $\left\{P_{n}\right\}_{n}$ is m-symmetric d-OPS and classical.

Remark 2.2.

1. Let $O_{m, r}$ be the set of $d-O P S s$ in $\mathcal{D}_{m, r}$. If $\left\{P_{n}^{(k)}\right\}_{n \geq 0}$ are the components of $\left\{P_{n}\right\}_{n \geq 0}, 0 \leq k \leq m$, the polynomials $\left\{P_{n}\right\}_{n \geq 0}$ are in $O_{0, d}$.
2. If the polynomials $\left\{P_{n}\right\}_{n \geq 0}$ are in $O_{m, r}$, then the polynomials $\left\{P_{n+1}^{\prime}\right\}_{n \geq 0}$ are in $O_{m, r}$.
3. We deduce then if $\left\{P_{n}\right\}_{n \geq 0}$ is in $O^{(d)}=\cup_{(m, r) \in I_{d}} O_{m, r}$, then $\left\{P_{n}\right\}_{n \geq 0}$ is classical d-OPS and all the components $\left\{P_{n}^{(k)}\right\}_{n \geq 0}, 0 \leq k \leq m$ are $d-O P S$.

3. Properties of the Obtained Polynomials

3.1. Some Properties of m-Symmetric PSs

In this section we state the dual sequence of the sequence $\left\{P_{n}\right\}_{n}$ and since this sequence is m-symmetric, we derive the dual sequences of the components. First we recall some properties of m-symmetric PSs. (We refer the reader to [4] for more details.)

Definition 3.1.

Let m be a nonnegative integer. A PS $\left\{P_{n}\right\}_{n}$ is called m-symmetric if $P_{n}(w x)=w^{n} P_{n}(x)$ for all n, where $w=e^{\frac{2 \pi}{m+1}} a(m+1)$-root of the unity.
For the particular case: $m=1$, we meet the well known notion of symmetric PS [5]. A characteristic property of m-symmetric PS is given by the following.

Proposition 3.2.

A PS $\left\{P_{n}\right\}_{n \geq 0}$ is m-symmetric if and only if there exist $(m+1)$ PSs $\left\{P_{n}^{k}\right\}_{n \geq 0} ; k=0,1, \ldots, m$; such that

$$
P_{(m+1) n+k}(x)=x^{k} P_{n}^{k}\left(x^{m+1}\right) ; \quad n \geq 0
$$

Definition 3.3.

1. For any PS $\left\{P_{n}\right\}_{n}$ there exists a sequence of linear functionals $\left(\mathscr{L}_{n}\right)_{n}$ defined by: $\left\langle\mathscr{L}_{n}, P_{m}\right\rangle=\delta_{n, m}$ called the dual sequence of the sequence $\left\{P_{n}\right\}_{n}$.
2. For $L \in \mathscr{P}^{\prime}$ and $q \in \mathbb{N}$, we define the linear functional $X^{q} L$ by: $\left\langle X^{q} L, Q\right\rangle=\left\langle L, X^{q} Q\right\rangle, Q \in \mathscr{P}$, where $\left(X^{q} Q\right)(x)=x^{q} Q(x)$, the multiplication operator by x^{q} is \mathscr{P}.
3. If $L \in \mathscr{P}^{\prime}$, we define $\left(\tau_{w}\right)_{*} L \in \mathscr{P}^{\prime}$ by:

$$
\left\langle\left(\tau_{w}\right)_{*} L, P\right\rangle=\left\langle L,\left(\tau_{w}\right)^{*} P\right\rangle, \quad P \in \mathscr{P}
$$

with $\left(\tau_{w}\right)^{*} P(x)=P(w x)$ and $w=e^{\frac{2 i \pi}{m+1}}$.
4. A linear functional sequence $\mathscr{L}=\left\{\mathscr{L}_{n}\right\}_{n}$ is called m-symmetric if

$$
\left\langle\mathscr{L}_{k}, x^{j}\right\rangle=0,
$$

for all integers j and k such that $k \not \equiv j[m+1]$.
A characterization of m-symmetric linear functional sequence and m-symmetric PS is given by the following.

Proposition 3.4.

Let $\mathscr{L}=\left\{\mathscr{L}_{n}\right\}_{n}$ be a linear functional sequence. \mathscr{L} is m-symmetric if and only if

$$
\left(\tau_{w}\right)_{*} \mathscr{L}_{k}=w^{k} \mathscr{L}_{k}, \quad \forall k \geq 0
$$

Let $\left\{P_{n}\right\}_{n}$ be a PS and let $\mathscr{L}=\left\{\mathscr{L}_{n}\right\}_{n}$ be its dual sequence. Then the following properties are equivalent:

1. The sequence $\left\{P_{n}\right\}_{n}$ is m-symmetric.
2. The linear functional sequence \mathscr{L} is m-symmetric.

Our purpose now is to derive the dual sequence of the components of an m-symmetric PS. First, we give the following notations:
Let q be a nonnegative integer and let $\mathscr{L} \in \mathscr{P}^{\prime}$ be a linear functional. Put

- $\left(\sigma_{q}\right)^{*}: \mathscr{P} \rightarrow \mathscr{P}$ the linear mapping defined by: $\left(\sigma_{q}\right)^{*}(P)(x)=P\left(x^{q}\right), P \in \mathscr{P}$.
- $\left(\sigma_{q}\right)_{*} \mathscr{L}$ the linear mapping defined by: $\left\langle\left(\sigma_{q}\right)_{*} \mathscr{L}, Q\right\rangle=\left\langle\mathscr{L},\left(\sigma_{q}\right)^{*} Q\right\rangle, Q \in \mathscr{P}$.

Proposition 3.5.

Let $\left\{P_{n}\right\}_{n}$ be a m-symmetric PSs, and let $\left\{P_{n}^{k}\right\}_{n} ; k=0,1, \ldots, m$ be its components. If $\left\{\mathscr{L}_{n}\right\}_{n \geq 0}$ is the dual sequence of $\left\{P_{n}\right\}_{n}$, then $\left\{\mathscr{L}_{n, k}\right\}_{n \geq 0}$, the dual sequence of $\left\{P_{n}^{k}\right\}_{n}, 0 \leq k \leq m$ is given by:

$$
\mathscr{L}_{n, k}=\left(\sigma_{m+1}\right) *\left(X^{k} \mathscr{L}_{n(m+1)+k}\right) .
$$

3.2. Components of the sequence $\left\{Q_{n}\right\}_{n}$

We recall the generator function of the sequence $\left\{Q_{n}\right\}_{n}$ is given by:

$$
e^{t^{m+1}}{ }_{0} F_{r}\left(\begin{array}{cc}
- & ;-x t \tag{8}\\
1+\alpha_{1}, \ldots, 1+\alpha_{r}
\end{array}\right)=\sum_{n=0}^{\infty} Q_{n}(x) t^{n}
$$

The sequence $\left\{Q_{n}\right\}_{n}$ is classical m-symmetric $((m+1)(r+1)-1)$-orthogonal. Moreover the corresponding $m+1$ components are also classical $((m+1)(r+1)-1)$-orthogonal.

We recall the identity 2, Problem 7, page 213 in [11]

$$
\begin{align*}
& \left.{ }_{p} F_{q}\left(\begin{array}{lll}
a_{1}, & \ldots & , a_{p} \\
b_{1}, & \ldots & , b_{q}
\end{array}\right) ; x\right)=\sum_{k=0}^{m} \frac{\left(a_{1}\right)_{k} \ldots\left(a_{p}\right)_{k}}{\left(b_{1}\right)_{k} \ldots\left(b_{q}\right)_{k}} \frac{x^{k}}{k!} \tag{9}\\
& { }_{(m+1) p} F_{(m+1) q+m}\left(\begin{array}{ll}
\left(\Delta\left(m+1, a_{p}+k\right)\right) & ; z), \\
\Delta^{*}(m+1, k+1), & \left(\Delta\left(m+1, b_{q}+k\right)\right)
\end{array}\right)
\end{align*}
$$

where $z=\frac{x^{m+1}}{(m+1)^{(1-p+q)(m+1)}}, \Delta(m+1, \lambda)$ the array of $m+1$ parameters

$$
\frac{\lambda}{m+1}, \frac{\lambda+1}{m+1}, \ldots, \frac{\lambda+m}{m+1}
$$

and $\Delta^{*}(m+1, k+1)$ is the array of only m parameters

$$
\frac{k+1}{m+1}, \frac{k+2}{m+1}, \ldots, \frac{k+m+1}{m+1}, \quad 0 \leq k \leq m
$$

where we omit the therm $\frac{m+1}{m+1}$.
We prove that

$$
\begin{aligned}
\Delta(m+1, \lambda)_{j} & =\frac{(\lambda)_{j(m+1)}}{(m+1)^{j(m+1)}} \\
\Delta^{*}(m+1, k)_{j} & =\frac{(k)_{j(m+1)}}{j!(m+1)^{j m}}
\end{aligned}
$$

For $z=\frac{(-x t)^{m+1}}{(m+1)^{(1+r)(m+1)}}$,

$$
{ }_{0} F_{(m+1) r+m}\left(\begin{array}{cc}
- \\
\Delta^{*}(m+1, k+1), & \left(\Delta\left(m+1, \alpha_{r}+k+1\right)\right)
\end{array} ; z\right)=\sum_{n=0}^{+\infty} \frac{(-x t)^{n(m+1)}}{(m+1)^{n}(k+1)_{n(m+1)} \prod_{s=1}^{r}\left(\alpha_{s}+k+1\right)_{n(m+1)}} .
$$

It results from (9) that

$$
e^{t^{m+1}}{ }_{0} F_{r}\left(\begin{array}{c}
- \\
1+\alpha_{1}, \ldots, 1+\alpha_{r}
\end{array} \quad ;-x t\right)=\sum_{n=0}^{+\infty} \sum_{k=0}^{m} x^{k}\left(\sum_{j=0}^{n} \frac{(-1)^{k+j(m+1)} x^{j(m+1)}}{\prod_{s=1}^{r}\left(\alpha_{s}+1\right)_{j(m+1)+k}(m+1)^{j}(k+j(m+1))!}\right) t^{n(m+1)+k}
$$

Then the $k^{\text {th }}$ component of the polynomial Q_{n} is

$$
Q_{k, n}(x)=\sum_{j=0}^{n} \frac{(-1)^{k+j(m+1)} x^{j}}{\prod_{s=1}^{r}\left(\alpha_{s}+1\right)_{j(m+1)+k}(m+1)^{j}(k+j(m+1))!} .
$$

We recall that $x^{k} Q_{k, n}\left(x^{m+1}\right)=Q_{n(m+1)+k}(x)$.
From the relations (2) and (3)

$$
P_{k, n}(x)=\sum_{j=0}^{n} \frac{(-1)^{(r+1)(k+j(m+1))}(m+1)^{r(k+j(m+1))} x^{j}}{\prod_{s=1}^{r}\left(\alpha_{s}+1\right)_{j(m+1)+k}(m+1)^{j}(k+j(m+1))!} .
$$

3.3. Dual sequence of $\left\{P_{n}\right\}_{n}$

Now we give the dual sequence of the sequence $\left\{P_{n}\right\}_{n}$ and for its components.
From the relation (8), we derive that

$$
{ }_{0} F_{r}\left(\begin{array}{cc}
- & ;-x t \\
1+\alpha_{1}, \ldots, 1+\alpha_{r}
\end{array}\right)=e^{-t^{n+1}} \sum_{n=0}^{\infty} Q_{n}(x) t^{n}
$$

Then

$$
\begin{gathered}
\sum_{n=0}^{+\infty} \frac{(-x t)^{n}}{n!\prod_{s=1}^{r}\left(\alpha_{s}+1\right)_{n}}=\sum_{n=0}^{+\infty} \frac{\left(-t^{(m+1)}\right)^{n}}{n!} \sum_{n=0}^{\infty} Q_{n}(x) t^{n} \\
\quad=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{\left[\frac{n}{m+1}\right]} \frac{(-1)^{k} Q_{n-k(m+1)}(x)}{(n-k)!k(m+1)!}\right) t^{n}
\end{gathered}
$$

Then

$$
x^{n}=\sum_{k=0}^{\left[\frac{n}{m+1}\right]} \frac{(-1)^{n+k} \prod_{s=1}^{r}\left(1+\alpha_{s}\right)_{n}}{(n-k)!k(m+1)!} Q_{n-k(m+1)}(x) .
$$

and

$$
x^{n}=\sum_{k=0}^{\left\lceil\frac{n}{m+1}\right\rceil} \frac{(-1)^{n+k(r(m+1)+1)} \prod_{s=1}^{r}\left(1+\alpha_{s}\right)_{n}}{(m+1)^{k r(m+1)}(n-k)!k(m+1)!\prod_{s=1}^{r}\left(1+\alpha_{s}\right)_{n-k(m+1)}} P_{n-k(m+1)}(x) .
$$

The dual sequence of the sequence $\left\{P_{n}\right\}$ is given by:

$$
\left\langle\mathscr{L}_{j}, x^{n}\right\rangle=\sum_{k=0}^{\left[\frac{n}{m+1}\right]} \frac{(-1)^{n+k(r(m+1)+1)} \prod_{s=1}^{r}\left(1+\alpha_{s}\right)_{n}}{(m+1)^{k r(m+1)}(n-k)!k(m+1)!\prod_{s=1}^{r}\left(1+\alpha_{s}\right)_{n-k(m+1)}} \delta_{j, n-k(m+1)} .
$$

Acknowledgement

The author thanks Professor Youssef Ben Cheikh for fruitful and informative discussions. This Project is supported by Researchers Supporting Project RSPD2023R753, King Saud University, Riyadh, Saudi Arabia.

References

[1] Y. Ben Cheikh, M. Blel, d-Orthogonality of a generalization of both Laguerre and Hermite Polynomials, Georgian Mathematical Journal. 27, (2) (2020), 183-190. Published Online: 2018-06-16 — DOI: https://doi.org/10.1515/gmj-2018-0043.
[2] Y. Ben Cheikh, K. Douak, On the classical d-orthogonal polynomials defined by certain generating function, I, Bull. Belgian. Math. Soc. 7 (2000), 107-124.
[3] Y. Ben Cheikh, I. Lamiri, A. Ouni, On Askey-scheme and d-orthogonality, I: A characterization theorem, Journal of Computational and Applied Mathematics, 233, (3) (2009), 621-629.
[4] M. Blel, On m-Symmetric d-Orthogonal Polynomials , C. R. Acad. Sci. Paris, Ser. I 350 (2012), 19-22.
[5] T.S. Chihara, An Introduction to Orthogonal Polynomials. Gordon and Breach, New-York, London, Paris, 1978.
[6] J. Van Iseghem, Vector orthogonal relations. Vector QD-algorithm, J. Comput. Appl. Math. 19 (1987), 141-150.
[7] R. Koekoek, R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, 98, (17) (1998), Faculty of the Technical Mathematics and Informatics, Delft University of Technology, Delft, Luke book (69),
[8] N. Kilar, Y. Simsek, H. M. Srivastava, Recurrence relations, associated formulas, and combinatorial sums for some parametrically generalized polynomials arising from an analysis of the Laplace transform and generating functions, The Ramanujan Journal volume $\mathbf{6 1}$ (2023), 731-756.
[9] I. Lamiri, A. Ouni, d-orthogonality of Hermite type polynomials, Appl. Math. Comput. 202 (2008), 24-43.
[10] P. Maroni, L'orthogonalité et les récurrences de polynômes d'ordre supérieur à deux, Ann. Fac. Sci. Toulouse 10, (1) (1989), 105-139.
[11] H.M. Srivastava, H.L. Manocha, A Treatise on Generating Functions, John Wiley \& Sons, New York, Toronto 1984.
[12] H. M. Srivastava Some Families of Generating Functions Associated with Orthogonal Polynomials and Other Higher Transcendental Functions, Mathematics, 10, (20)2022, 3730; https://doi.org/10.3390/math10203730
[13] H. M. Srivastava, Some applications of the Lagrange expansion theorem associated with general polynomial systems J. Nonlinear Convex Anal, 24, (5) (2023), 1113-1127.
[14] H. M. Srivastava, An Introductory Overview of Bessel Polynomials, the Generalized Bessel Polynomials and the q-Bessel Polynomials Symmetry, 15, (4) (2023), 822, 1-28; https://doi.org/10.3390/sym15040822.
[15] H. M. Srivastava, S. Arjika, A General Family of q-Hypergeometric Polynomials and Associated Generating Functions, Mathematics, 9, (11) (2021), 1161; https://doi.org/10.3390/math9111161.
[16] H. M. Srivastava, Y. Ben Cheikh Orthogonality of some polynomial sets via quasi-monomiality, Applied Mathematics and Computation, 141, (2-3) (2003), 415-425.

[^0]: 2020 Mathematics Subject Classification. 42C05, 33C45, 33C20.
 Keywords. d-Orthogonal polynomials; Generalized hypergeometric polynomials; Hermite polynomials; Laguerre polynomials; Generating functions; Dual sequence of d-orthogonal polynomials.

 Received: 01 February 2023; Accepted: 18 August 2023
 Communicated by Hari M. Srivastava
 Researchers Supporting Project RSPD2023R753, King Saud University, Riyadh, Saudi Arabia.
 Email address: mblel@ksu.edu.sa (Mongi Blel)

