KING SAUD UNIVERSITY

COLLEGE OF SCIENCES

DEPARTMENT OF MATHEMATICS
MATH-244 (Linear Algebra); Final Exam; Semester 432
Max. Marks: 40
Max. Time: 3 hours
Note: Attempt all the five questions!

Question 1 [3+2+2 marks]:
a) If $A^{-1}=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$, then find $\operatorname{adj}(\operatorname{adj}(A))$.
b) Find the values of k that makes the matrix $\left[\begin{array}{cr}2 & 3 \boldsymbol{k}-\mathbf{2} \\ \boldsymbol{k}^{2} & -\mathbf{1}\end{array}\right]$ symmetric.
c) Let $\boldsymbol{B}=\left[\begin{array}{rrr}1 & 3 & 2 \\ 0 & -5 & 4 \\ 0 & 0 & 6\end{array}\right]$. Explain! Why the matrix \boldsymbol{B} can be expressed as a product of elementary matrices?

Question 2 [$4+3$ marks]:
a) Solve of the linear system of equations with augmented matrix:

$$
[A: B]=\left[\begin{array}{cccc|c}
1 & -1 & 0 & 1 & 1 \\
-1 & 2 & 0 & -2 & 2 \\
3 & 1 & 0 & 3 & -1
\end{array}\right]
$$

b) Solve the following linear system of equations by Cramer's Rule:

$$
\begin{aligned}
x-y & =1 \\
-2 x+3 y-4 z & =0 \\
-2 x+3 y-3 z & =1
\end{aligned}
$$

Question 3 [2+2+4 marks]:
a) Show that $E=\left\{\boldsymbol{a x}-2 \boldsymbol{a} \boldsymbol{x}^{4}+(\boldsymbol{a}-\boldsymbol{b}) \boldsymbol{x}^{6}+(\mathbf{3 a}+2 \boldsymbol{b}) \boldsymbol{x}^{7}: \boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}\right\}$ is a real vector space under usual addition and scalar multiplication of polynomials.
b) Find a basis and dimension of the vector space \boldsymbol{E}.
c) Show that $\left.<\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}\right),\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \boldsymbol{y}_{3}\right)\right\rangle=\boldsymbol{x}_{1} \boldsymbol{y}_{1}+\mathbf{2} \boldsymbol{x}_{2} \boldsymbol{y}_{2}+\mathbf{3} \boldsymbol{x}_{3} \boldsymbol{y}_{3}$ defines an inner product on the vector space \mathbb{R}^{3}. Then find an orthogonal basis of \mathbb{R}^{3} by applying the Gram-Schmidt algorithm on $\left\{\boldsymbol{u}_{\mathbf{1}}=(\mathbf{1}, \mathbf{1}, \mathbf{1}), \boldsymbol{u}_{\mathbf{2}}=(\mathbf{1}, \mathbf{1}, \mathbf{0}), \boldsymbol{u}_{3}=(\mathbf{0}, \mathbf{1}, \mathbf{0})\right\}$.

Question 4 [3+3+3 marks]:
Let $\boldsymbol{B}=\left\{u_{1}=(1,-1), u_{2}=(1,1)\right\}$ and $\boldsymbol{C}=\left\{v_{1}=(1,1,0), v_{2}=(1,0,1), v_{3}=(1,1,1)\right\}$ be bases of \mathbb{R}^{2} and \mathbb{R}^{3}, respectively. Let $\mathbf{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the linear transformation such that $\mathbf{T}(1,-1)=(3,5,2), \mathbf{T}(1,1)=(2,-1,-3)$. Then find:
a) $\mathbf{T}(\mathbf{1}, \mathbf{0})$ and $\mathbf{T}(\mathbf{0}, \mathbf{1})$.
b) The matrix $[\mathbf{T}]_{B}^{C}$ of the linear transformation \mathbf{T} with respect to the bases \boldsymbol{B} and \boldsymbol{C}.
c) Coordinate vector $[\mathbf{T}(0,1)]_{C}$ by using $[\mathbf{T}]_{B}^{C}$.

Question 5 [2+2+2+3 marks]:
Let $\boldsymbol{\lambda}_{\mathbf{1}}=\mathbf{0}, \boldsymbol{\lambda}_{\mathbf{2}}=\mathbf{1}$ and $\boldsymbol{\lambda}_{\mathbf{3}}=\mathbf{- 1}$ be the eigenvalues of 8×8 matrix \boldsymbol{A} with algebraic multiplicities $\mathbf{3}, \mathbf{2}$ and $\mathbf{3}$, respectively. Let $\operatorname{dim}\left(\boldsymbol{E}_{\lambda_{1}}\right)=\mathbf{3}, \operatorname{dim}\left(\boldsymbol{E}_{\lambda_{2}}\right)=\mathbf{2}$ and $\operatorname{dim}\left(\boldsymbol{E}_{\lambda_{3}}\right)=\mathbf{3}$, where $\boldsymbol{E}_{\lambda_{j}}$ denotes the eigenspace with respect to the eigenvalue $\lambda_{\boldsymbol{j}}$.
a) Find the characteristic polynomial $\boldsymbol{q}_{\boldsymbol{A}}(\boldsymbol{\lambda})$ of the matrix \boldsymbol{A}.
b) Explain, why the matrix \boldsymbol{A} is diagonalizable?
c) Find the diagonal matrix \boldsymbol{D} such that $\boldsymbol{A}=\boldsymbol{P} \boldsymbol{D} \boldsymbol{P}^{\boldsymbol{- 1}}$, where \boldsymbol{P} is an invertible matrix.
d) Find \boldsymbol{A}^{11}.

