KING SAUD UNIVERSITY COLLEGE OF SCIENCES DEPARTMENT OF MATHEMATICS

MATH-244 (Linear Algebra); Final Exam; Semester 432

Max. Marks: 40

Max. Time: 3 hours

Note: Attempt all the five questions!

Question 1 [3+2+2 marks]:

- a) If $A^{-1} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$, then find adj(adj(A)).
- b) Find the values of **k** that makes the matrix $\begin{bmatrix} 2 & 3k 2 \\ k^2 & -1 \end{bmatrix}$ symmetric.
- c) Let $\boldsymbol{B} = \begin{bmatrix} 1 & 3 & 2 \\ 0 & -5 & 4 \\ 0 & 0 & 6 \end{bmatrix}$. Explain! Why the matrix \boldsymbol{B} can be expressed as a product of elementary matrices?

Question 2 [4+3 marks]:

a) Solve of the linear system of equations with augmented matrix:

	1	-1	0	1	1	
[A:B] =	-1	2	0	-2	2	
	3	1	0	3	-1	

b) Solve the following linear system of equations by Cramer's Rule:

$$x - y = 1$$

$$-2x + 3y - 4z = 0$$

$$-2x + 3y - 3z = 1$$

Question 3 [2+2+4 marks]:

- a) Show that $E = \{ax 2ax^4 + (a b)x^6 + (3a + 2b)x^7 : a, b \in \mathbb{R}\}$ is a real vector space under usual addition and scalar multiplication of polynomials.
- b) Find a basis and dimension of the vector space *E*.
- c) Show that $\langle (x_1, x_2, x_3), (y_1, y_2, y_3) \rangle = x_1y_1 + 2x_2y_2 + 3x_3y_3$ defines an inner product on the vector space \mathbb{R}^3 . Then find an orthogonal basis of \mathbb{R}^3 by applying the Gram-Schmidt algorithm on $\{u_1 = (1, 1, 1), u_2 = (1, 1, 0), u_3 = (0, 1, 0)\}$.

Question 4 [3+3+3 marks]:

Let $B = \{u_1 = (1, -1), u_2 = (1, 1)\}$ and $C = \{v_1 = (1, 1, 0), v_2 = (1, 0, 1), v_3 = (1, 1, 1)\}$ be bases of \mathbb{R}^2 and \mathbb{R}^3 , respectively. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation such that T(1, -1) = (3, 5, 2), T(1, 1) = (2, -1, -3). Then find:

- a) **T(1,0)** and **T(0,1)**.
- b) The matrix $[\mathbf{T}]_{B}^{C}$ of the linear transformation **T** with respect to the bases **B** and **C**.
- c) Coordinate vector $[\mathbf{T}(0,1)]_{\mathcal{C}}$ by using $[\mathbf{T}]_{\boldsymbol{B}}^{\mathcal{C}}$.

Question 5 [2+2+2+3 marks]:

Let $\lambda_1 = 0$, $\lambda_2 = 1$ and $\lambda_3 = -1$ be the eigenvalues of 8×8 matrix A with algebraic multiplicities 3, 2 and 3, respectively. Let $\dim(E_{\lambda_1}) = 3$, $\dim(E_{\lambda_2}) = 2$ and $\dim(E_{\lambda_3}) = 3$, where E_{λ_i} denotes the eigenspace with respect to the eigenvalue λ_i .

- a) Find the characteristic polynomial $q_A(\lambda)$ of the matrix A.
- b) Explain, why the matrix **A** is diagonalizable?
- c) Find the diagonal matrix **D** such that $A = PDP^{-1}$, where **P** is an invertible matrix.
- d) Find **A**¹¹.

***!