Solution Key:

King Saud University
College of Sciences
Department of Mathematics
Math-244 (Linear Algebra); Final Exam; Semester 442
Max. Marks: 40
Time: 3 hours

Question 1 [Marks: 5+5]:

I. Choose the correct answer:
(i) Let B and C be ordered bases of a vector space V with transition matrix $C \boldsymbol{P}_{\boldsymbol{B}}=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]$. If the coordinate vector $[\boldsymbol{v}]_{C}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ then the coordinate vector $[\boldsymbol{v}]_{B}$ is:
(a) $(1,3,6)$
(b) $(6,3,1)$
(c) $\sqrt{ }(1,1,1)$
(d) $(1,1,2)$.
(ii) The dimension of the column space $\operatorname{col}\left(A^{t}\right)$ of $A=\left[\begin{array}{rrrrr}2 & 3 & 1 & -1 & 0 \\ 0 & 0 & 4 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$ is:
(a) 1
(b) $\ulcorner 2$
(c) 4
(d) 5 .
(iii) If $U=\left[\begin{array}{cc}-1 & 3 \\ y & 1\end{array}\right]$ and $V=\left[\begin{array}{cc}5 & 2 y \\ -4 & 1\end{array}\right]$ are two orthogonal matrices with respect to the inner product $\langle A, B\rangle=\operatorname{trace}\left(A B^{\mathrm{t}}\right)$ on the vector space M_{2} of 2×2 real matrices, then:
(a) $\checkmark y=2$
(b) $y=-2$
(c) $y=0$
(d) $y=1$.
(iv) If the inner product on the vector space $\boldsymbol{P}_{\mathbf{2}}$ of polynomials with degree ≤ 2 is defined by $\langle p, q\rangle=a a_{1}+2 b b_{1}+c c_{1}, \forall p=a+b x+c x^{2}, q=a_{1}+b_{1} x+c_{1} x^{2} \in \boldsymbol{P}_{2}$ and θ is the angle between the polynomials $1+x-x^{2}$ and $2+x-2 x^{2}$, then:
(a) $\cos \theta=\frac{5}{3 \sqrt{3}}$
(b) $\cos \theta=\frac{2}{\sqrt{3}}$
(c) $\checkmark \cos \theta=\frac{3}{\sqrt{10}}$
(d) $\cos \theta=1$.
(v) If $S=\left\{v_{1}=(2,1), v_{2}=(1,0)\right\}$ is a basis for Euclidean space \mathbb{R}^{2} and $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the linear transformation defined by $T\left(v_{1}\right)=(1,5)$ and $T\left(v_{2}\right)=(0,3)$, then $T(4,6)$ is equal to:
(a) $\checkmark(6,6)$
(b) $(-8,-22)$
(c) $(-10,-8)$
(d) $(4,23)$.
II. Determine whether the following statements are true or false; justify your answer.
(i) If $\{(-3 r+4 s, r-s, r, s): r, s \in \mathbb{R}\}$ is the solution space of homogeneous system $A X=0$, then $\operatorname{nullity}(A)=2$.
True: $\{(-3,1,1,0),(4,-1,0,1)\}$ is a basis for the null space.
(ii) For any $m \times n$ matrix $A, \operatorname{dim}\left(\boldsymbol{N}\left(A^{t}\right)\right)+\operatorname{dim}(\operatorname{col}(\mathrm{A}))=m$.

True: $\operatorname{dim}\left(\operatorname{row}\left(A^{t}\right)\right)=\operatorname{dim}(\operatorname{col}(\mathrm{A})) \Rightarrow \operatorname{dim}\left(N\left(A^{t}\right)\right)+\operatorname{dim}\left(\operatorname{row}\left(A^{t}\right)\right)=\operatorname{nullity}\left(A^{t}\right)+\operatorname{rank}\left(A^{t}\right)=m$.
(iii) The transformation $T: \mathbb{R} \rightarrow \mathbb{R}$ given by $T(r)=|r|$ is linear.

False: for example, $|-1+1|=0 \neq 2=|-1|+|1|$. (Or, $|(-1) 1|=1 \neq-1=-1|1|$.
(iv) Eigenvalues of any matrix are same as the eigenvalues of its reduced row echelon form.

False: for example, 2 is an eigenvalue of $\left[\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right]$ but neither of the two eigenvalues of its RREF is 2 .
(v) If the characteristic polynomial of a matrix A is $q_{A}(\lambda)=\lambda^{2}-2$, then A is diagonalizable.

True: the quadratic characteristic polynomial gives two different eigenvalues of 2×2 matrix A.

Question 2 [Marks: 2.5+1+2.5]: Consider the matrix $A=\left[\begin{array}{rrrrr}1 & 0 & -2 & 1 & 3 \\ -1 & 1 & 5 & -1 & -3 \\ 0 & 2 & 6 & 0 & 1 \\ 1 & 1 & 1 & 1 & 4\end{array}\right]$.Then:
(i) Find a basis for $\operatorname{col}(A)$.

Solution: $=\left[\begin{array}{rrrrr}1 & 0 & -2 & 1 & 3 \\ -1 & 1 & 5 & -1 & -3 \\ 0 & 2 & 6 & 0 & 1 \\ 1 & 1 & 1 & 1 & 4\end{array}\right] \sim\left[\begin{array}{rrrrr}1 & 0 & -2 & 1 & 3 \\ 0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$ (REF). So, $\{(1,-1,0,1),(0,1,2,1),(3,-3,1,4)\}$ is a basis for $\operatorname{col}(\mathrm{A})$.
(ii) Find $\operatorname{dim}(\operatorname{row}(A))$.

Solution: $\operatorname{dim}(\operatorname{row}(A))=\operatorname{dim}(\operatorname{col}(A))=3$ as is clear from the above $\operatorname{Part}(\mathrm{i})$.
(iii) Find a basis for the null space $N(A)$.

Solution: The REF of A obtained in Part (i) gives the basis $\{(2,-3,1,0,0),(-1,0,0,1,0)\}$ for $N(A)$.
Question 3 [Marks: 3+3]: Let $E=\left\{v_{1}=(1,1,-4,-3), v_{2}=(2,0,2,-2), v_{3}=(2,-1,3,2)\right\}$. Then:
(i) Find a basis B for the vector space $\operatorname{span}(E)$ such that $B \subseteq E$. If $E-B \neq \phi$, then express each element of $E-B$ as linear combination of the basic vectors.
Solution: The set E is linearly independent and so $B ;=E$ is a basis for $\operatorname{span}(E)$; this completes the solution of Part (i).
(ii) Use the basis B (as in Part (i)) to find a basis \boldsymbol{C} for the Euclidean space \mathbb{R}^{4}.

Solution: It is easily seen that $\left.\left\{v_{1}, v_{2}, v_{3},(1,0,0,0),\right)\right\}$ being linearly independent is a basis for the space \mathbb{R}^{4}.
Question 4: [Marks: 2+4]
a) Let $\{u, v, w\}$ be an orthogonal set of vectors in an inner product space. Then show that:

$$
\|u\|^{2}+\|v\|^{2}+\|w\|^{2}=\|u+v+w\|^{2} .
$$

Solution: $\|u+v+w\|^{2}=\langle u+v+w, u+v+w\rangle=\|u\|^{2}+2(\langle u, v\rangle+\langle u, w\rangle+\langle v, u\rangle)+\|v\|^{2}+\|w\|^{2}$. Hence, by the given orthogonality of $\{u, v, w\},\|u+v+w\|^{2}=\|u\|^{2}+\|v\|^{2}+\|w\|^{2}$.
b) Let $A=\left\{\boldsymbol{u}_{1}=(1,1,1), \boldsymbol{u}_{2}=(0,1,-1), \boldsymbol{u}_{3}=(3,-2,2)\right\}$. Use the Gram-Schmidt algorithm to obtain an orthonormal set B of vectors such that $\operatorname{span}(B)=\operatorname{span}(A)$.
Solution: Put $v_{1}:=\boldsymbol{u}_{1}=(1,1,1), v_{2}:=\boldsymbol{u}_{2}-\frac{\left\langle u_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}=\boldsymbol{u}_{2}=(0,1,-1), v_{2}:=\boldsymbol{u}_{3}-\frac{\left\langle u_{3}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}-\frac{\left\langle u_{3}, v_{2}\right\rangle}{\left\|v_{2}\right\|^{2}} v_{2}=(2,-1,-1)$.
Then, $B:=\left\{\boldsymbol{w}_{1}:=\frac{1}{\left\|v_{1}\right\|} v_{1}=\frac{1}{\sqrt{3}}(1,1,1), \boldsymbol{w}_{2}:=\frac{1}{\left\|v_{2}\right\|} v_{2}=\frac{1}{\sqrt{2}}(0,1,-1), \boldsymbol{w}_{3}:=\frac{1}{\left\|v_{3}\right\|} v_{3}=\frac{1}{\sqrt{6}}(2,-1,-1)\right\}$ is as required.
Question 5: [Marks: $(2+1.5+2.5)+(2.5+1+2.5)]$
a) Let the linear transformation $T: \mathrm{M}_{2} \rightarrow \mathbb{R}^{2}$ be defined by $T\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=(a, b), \forall a, b, c, d \in \mathbb{R}$, Then find:
(i) A basis for $k e r(T)$.

Solution: Clearly, $\operatorname{ker}(T)=\left\{\left[\begin{array}{ll}0 & 0 \\ c & d\end{array}\right]: c, d \in \mathbb{R}\right\}=\operatorname{span}\left(\left\{\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}\right.$; hence, $\left\{\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$ being linearly independent in M_{2} is a basis for $\operatorname{ker}(T)$.
(ii) $\operatorname{rank}(T)$.

Solution: $\operatorname{rank}(T)=\operatorname{dim}\left(\mathrm{M}_{2}\right)-\operatorname{nullity}(T)=4-2=2$ from the solution of Part (i).
(iii) The standard matrix $[T]_{B}^{C}$, where B and C are the standard bases of M_{2} and \mathbb{R}^{2}, respectively.

Solution: $[T]_{B}^{C}=\left[\left[T\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\right)\right]_{C}\left[T\left(\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\right)\right]_{C}\left[T\left(\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]\right)\right]_{C}\left[T\left(\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right]_{C}\right]=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right]\right.$..
b) Let $A=\left[\begin{array}{rrr}1 & 0 & 0 \\ \boldsymbol{x} & 2 & 0 \\ \boldsymbol{y} & \boldsymbol{z} & -3\end{array}\right]$. Then:
(i) Find the values of $\boldsymbol{x}, \boldsymbol{y}$ and z such that $\lambda_{1}=1, \lambda_{2}=2$ and $\lambda_{3}=-3$ are the eigenvalues of A with corresponding eigenvectors $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$, respectively.

Solution: $\left[\begin{array}{ccc}1 & 0 & 0 \\ \boldsymbol{x} & 2 & 0 \\ \boldsymbol{y} & \mathbf{z} & -3\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\mathbf{1}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] \Rightarrow\left[\begin{array}{c}1 \\ x+2 \\ y+z-3\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] \Rightarrow x+2=1, y+z-3=1$; and $\left[\begin{array}{rrr}1 & 0 & 0 \\ \boldsymbol{x} & 2 & 0 \\ y & z & -3\end{array}\right]\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]=\mathbf{2}\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right] \Rightarrow z-3=2$. Hence, $x=-1, y=-1, z=5$.
(ii) Use the values of $\boldsymbol{x}, \boldsymbol{y}$ and \boldsymbol{z} (as in Part (i)) to show that the matrix A is diagonalizable.

Solution: Since A is a 3×3 matrix having 3 different eigenvalues, it is diagonalizable.
(iii) Find A^{5}.

Solution: Since the matrix A is diagonalizable having eigenvalues $1,2,-3$ with corresponding eigen vectors $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$, respectively, we get $D=\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -3\end{array}\right]$ and $P=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]$ with $P^{-1}=\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]$ satisfying $A=P D P^{-1}$. Hence, $A^{5}=P D^{5} P^{-1}=\left[\begin{array}{ccc}1 & 0 & 0 \\ -31 & 32 & 0 \\ -31 & 275 & -243\end{array}\right]$.

