Solution Key:

King Saud University College of Sciences Department of Mathematics Math-244 (Linear Algebra); Final Exam; Semester 442 Max. Marks: 40 **Time: 3 hours**

Question 1 [Marks: 5+5]:

I.	Choose the correct a	nswer:		
(i)	Let <i>B</i> and <i>C</i> be ordered bases of a vector space <i>V</i> with transition matrix $_{C}P_{B} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$			atrix $_{C}P_{B} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$. If
	the coordinate vector $[\boldsymbol{v}]_C = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$ then the coordinate vector $[\boldsymbol{v}]_B$ is:			
	(a) (1,3,6)	(b) (6,3,1)	$(c) \checkmark (1,1,1)$	(d) (1,1,2).
(ii)	The dimension of the	the column space $col(A^t)$	of $A = \begin{bmatrix} 2 & 3 & 1 & -1 \\ 0 & 0 & 4 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	0 is:
(iii)	(a) 1 (b) \checkmark 2 (c) 4 (d) 5. If $U = \begin{bmatrix} -1 & 3 \\ y & 1 \end{bmatrix}$ and $V = \begin{bmatrix} 5 & 2y \\ -4 & 1 \end{bmatrix}$ are two orthogonal matrices with respect to the inner product $\langle A, B \rangle = trace (AB^{t})$ on the vector space M_2 of 2x2 real matrices, then:			
	(a) $\checkmark y = 2$	(b) $y = -2$	(c) $y = 0$	(d) $y = 1$.
(iv)	If the inner product on the vector space P_2 of polynomials with degree ≤ 2 is defined by $\langle p,q \rangle = aa_1 + 2bb_1 + cc_1$, $\forall p = a + bx + cx^2$, $q = a_1 + b_1x + c_1x^2 \in P_2$ and θ is the angle between the polynomials $1 + x - x^2$ and $2 + x - 2x^2$, then:			
	(a) $\cos\theta = \frac{5}{3\sqrt{3}}$	(b) $\cos\theta = \frac{2}{\sqrt{3}}$	(c) $\checkmark \cos \theta = \frac{3}{\sqrt{10}}$	(d) $\cos \theta = 1$.
(v)	(v) If $S = \{v_1 = (2,1), v_2 = (1,0)\}$ is a basis for Euclidean space \mathbb{R}^2 and $T: \mathbb{R}^2$ linear transformation defined by $T(v_1) = (1,5)$ and $T(v_2) = (0,3)$, then $T(4,6)$ is			
	(a) ✓ (6,6)	(b) (-8, -22)	(c) $(-10, -8)$	(d) (4,23).
II. (i)	Determine whether the If $\{(-3r + 4s, r - s, r), then nullity(A) = 2.$	the following statement $(s): r, s \in \mathbb{R}$ is the solu	ts are true or false; jus tion space of homogene	tify your answer. sous system $AX = 0$,

True: $\{(-3,1,1,0), (4,-1,0,1)\}$ is a basis for the null space.

- (ii) For any $m \times n$ matrix A, $dim(N(A^t)) + dim(col(A)) = m$. **True**: $dim(row(A^t)) = dim(col(A)) \Rightarrow dim(N(A^t)) + dim(row(A^t)) = nullity(A^t) + rank(A^t) = m.$
- (iii) The transformation $T: \mathbb{R} \to \mathbb{R}$ given by T(r) = |r| is linear. **False**: for example, $|-1 + 1| = 0 \neq 2 = |-1| + |1|$. (Or, $|(-1)1| = 1 \neq -1 = -1|1|$.

(iv) Eigenvalues of any matrix are same as the eigenvalues of its reduced row echelon form. **False**: for example, 2 is an eigenvalue of $\begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$ but neither of the two eigenvalues of its RREF is 2.

(v) If the characteristic polynomial of a matrix A is $q_A(\lambda) = \lambda^2 - 2$, then A is diagonalizable. True: the quadratic characteristic polynomial gives two different eigenvalues of 2x2 matrix A.

Question 2 [Marks: 2.5+1+2.5]: Consider the matrix $A = \begin{bmatrix} 1 & 0 & -2 & 1 & 3 \\ -1 & 1 & 5 & -1 & -3 \\ 0 & 2 & 6 & 0 & 1 \\ 0 & 2 & 6 & 0 & 1 \end{bmatrix}$. Then:

(i) Find a basis for *col*(*A*).

(1) Find a data for contain **Solution:** = $\begin{bmatrix} 1 & 0 & -2 & 1 & 3 \\ -1 & 1 & 5 & -1 & -3 \\ 0 & 2 & 6 & 0 & 1 \\ 1 & 1 & 1 & 1 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -2 & 1 & 3 \\ 0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ (REF). So, {(1,-1,0,1), (0,1,2,1), (3,-3,1,4)} is a basis for *col*(A).

(ii) Find dim(row(A)).

Solution: dim(row(A)) = dim(col(A)) = 3 as is clear from the above Part (i).

(iii) Find a basis for the null space N(A).

Solution: The REF of A obtained in Part (i) gives the basis $\{(2,-3,1,0,0),(-1,0,0,1,0)\}$ for N(A).

Question 3 [Marks: 3+3]: Let $E = \{v_1 = (1,1,-4,-3), v_2 = (2,0,2,-2), v_3 = (2,-1,3,2)\}$. Then:

(i) Find a basis B for the vector space span(E) such that $B \subseteq E$. If $E - B \neq \phi$, then express each element of E - B as linear combination of the basic vectors.

Solution: The set E is linearly independent and so B := E is a basis for span(E); this completes the solution of Part (i). (ii) Use the basis B (as in Part (i)) to find a basis C for the Euclidean space \mathbb{R}^4 .

Solution: It is easily seen that $\{v_1, v_2, v_3, (1,0,0,0,)\}$ being linearly independent is a basis for the space \mathbb{R}^4 .

Question 4: [Marks: 2+4]

a) Let $\{u, v, w\}$ be an orthogonal set of vectors in an inner product space. Then show that: $||u||^{2} + ||v||^{2} + ||w||^{2} = ||u + v + w||^{2}.$

- **Solution:** $||u + v + w||^2 = \langle u + v + w, u + v + w \rangle = ||u||^2 + 2(\langle u, v \rangle + \langle u, w \rangle + \langle v, u \rangle) + ||v||^2 + ||w||^2$. Hence, by the given orthogonality of $\{u, v, w\}$, $||u + v + w||^2 = ||u||^2 + ||v||^2 + ||w||^2$.
 - **b**) Let $A = \{u_1 = (1,1,1), u_2 = (0,1,-1), u_3 = (3,-2,2)\}$. Use the Gram-Schmidt algorithm to obtain an orthonormal set B of vectors such that span(B) = span(A).

Solution: Put $v_1 \coloneqq u_1 = (1,1,1), v_2 \coloneqq u_2 - \frac{\langle u_2, v_1 \rangle}{\|v_1\|^2} v_1 = u_2 = (0,1,-1), v_2 \coloneqq u_3 - \frac{\langle u_3, v_1 \rangle}{\|v_1\|^2} v_1 - \frac{\langle u_3, v_2 \rangle}{\|v_2\|^2} v_2 = (2,-1,-1).$ Then, $B \coloneqq \{w_1 \coloneqq \frac{1}{\|v_1\|} v_1 = \frac{1}{\sqrt{3}} (1,1,1), w_2 \coloneqq \frac{1}{\|v_2\|} v_2 = \frac{1}{\sqrt{2}} (0,1,-1), w_3 \coloneqq \frac{1}{\|v_3\|} v_3 = \frac{1}{\sqrt{6}} (2,-1,-1)\}$ is as required. **Question 5:** [Marks: (2+1.5+2.5) + (2.5+1+2.5)]

- a) Let the linear transformation $T: M_2 \to \mathbb{R}^2$ be defined by $T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = (a, b), \forall a, b, c, d \in \mathbb{R}$, Then find:
- (i) A basis for ker(T).

Solution: Clearly, $ker(T) = \left\{ \begin{bmatrix} 0 & 0 \\ c & d \end{bmatrix} : c, d \in \mathbb{R} \right\} = span\left(\left\{ \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\} \right); \text{ hence, } \left\{ \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ being linearly independent in M_2 is a basis for ker(T).

(ii) rank(T).

Solution: $rank(T) = dim(M_2) - nullity(T) = 4 - 2 = 2$ from the solution of Part (i).

(iii) The standard matrix $[T]_B^B$, where B and C are the standard bases of M_2 and \mathbb{R}^2 , respectively.

Solution: $[T]_B^C = \begin{bmatrix} T \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \end{bmatrix}_C \begin{bmatrix} T \begin{pmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \end{bmatrix}_C \begin{bmatrix} T \begin{pmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \end{bmatrix}_C \begin{bmatrix} T \begin{pmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \end{bmatrix}_C \begin{bmatrix} T \begin{pmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \end{bmatrix}_C \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$ b) Let $A = \begin{bmatrix} 1 & 0 & 0 \\ x & 2 & 0 \\ y & z & -3 \end{bmatrix}$. Then:

(i) Find the values of x, y and z such that $\lambda_1 = 1$, $\lambda_2 = 2$ and $\lambda_3 = -3$ are the eigenvalues of A with corresponding eigenvectors $\begin{bmatrix} 1\\1\\1\\1\end{bmatrix}, \begin{bmatrix} 0\\1\\1\\1\end{bmatrix}$ and $\begin{bmatrix} 0\\0\\1\\1\end{bmatrix}$, respectively.

Solution: $\begin{bmatrix} 1 & 0 & 0 \\ x & 2 & 0 \\ y & z & -3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \mathbf{1} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 \\ x+2 \\ y+z-3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \Rightarrow x+2 = 1, y+z-3 = 1; \text{ and } \begin{bmatrix} 1 & 0 & 0 \\ x & 2 & 0 \\ y & z & -3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \mathbf{2} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \Rightarrow z-3 = 2.$ Hence, x = -1, y = -1, z = 5.

(ii) Use the values of x, y and z (as in Part (i)) to show that the matrix A is diagonalizable. Solution: Since A is a 3×3 matrix having 3 different eigenvalues, it is diagonalizable.

(iii) Find A^5 .

Solution: Since the matrix A is diagonalizable having eigenvalues 1, 2, -3 with corresponding eigen vectors $\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}, \begin{bmatrix}
0 \\
2 \\
1
\end{bmatrix}, \begin{bmatrix}
0 \\
0 \\
2 \\
0 \\
-3
\end{bmatrix} and P = \begin{bmatrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 \\
-1 & 1 \\
0 \\
0 \\
-1 & 1
\end{bmatrix}$ satisfying $A = PD P^{-1}$. Hence, $A^5 = P D^5 P^{-1} = \begin{bmatrix}
1 \\
-31 \\
275 - 243\end{bmatrix}$.