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Question 1 :

1. (a) Since Q is dense in R, then for all [a,b] C [0,1], sup f(z) = b
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and inf f(x) = —b. We deduce that U(f) = / rdr = 3 and
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L(f)= / —zdr = ——.
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(b) As U(f) # L(f), then f is not Riemann integrable.
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(¢) f(x) =x a.e, then f Lebesgue integrable and f(z)dm(z) = 3
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Question 2 :

1. lim f,(x) =0, for all z € R.
n—-+o0o
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2. fu(=) = =, then the sequence (f,), is not uniformly convergent on [0, 1].
n

For all n € N, the function f,, is decreasing on the interval [1,2], then
0 < fu(x) < fu(1) = 1752 and the sequence (f,,), is uniformly convergent
on the interval [1,2].



3. Course

4. On the interval [0,1], 0 < f,(z) < %, which is integrable on [0, 1], then
Yona

by dominate convergence theorem lim ——5dr=0.
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Question 3 :
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1. Since the sequence ( ) is decreasing then
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foralln <m € N and x € R.
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< —, then the series g fn(x) is uniformly conver-
n
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gent on R.
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(b) Since the functions f,(x) —y

5 are continuous and the con-
T

vergence of the series Z fn(z) is uniform, then the function f is

n>1
continuous on R.

(c) Since the convergence of the series Z fn(z) is uniform on R and
n>1
o (CDF .
lim =0, then lim f(x)=0.
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Question 4 :

1. A subset E of R is said to be measurable with respect to the Lebesgue
outer measure m* if

m*(X)=m"(XNE)+m"(XNE, VXCR

2. If m*(F) =0, then for X C R, m*(XNE) =0and m*(XNE°) <m*(X).
Then m*(X) > m*(X N E) 4+ m*(X N E°). Moreover as m* is an outer
measure, m*(X) < m*(X N E) +m*(X N E°). Then m*(X) = m*(X N
E)+m*(X N E°) and E is measurable.

3. As m*({a}) = 0 for all @ € R, then for any countable set E in R,
m*(E) = 0.



4. As m*(]0,1]) = 1, then [0, 1] is not countable.
Question 5 :

1 1
1. For a > 0, (=) *([a,+o0]) = f71([0,~]), which is measurable. If a =
a

f
0, (%)1([0, +o0]) = ([0, +00]), which is measurable. For a < 0,
(%)1([(1, +00]) = (0, 4+00]), which is measurable.
2. Course.
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is integrable on [0, 1]. Then
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