

King Saud University College of Engineering Electrical Engineering Department 1st Semester 1425H/1426H

EE208: Logic Design
Final Term Exam
Time Allowed: 3H
(· · · · · · · · · · · · · · · · · · ·

Attempt All Questions			
1]	a) Find the smallest number among the following numbers:		
	$(111111110.001)_2$ $(1001010100.01)_{BCD}$ $(376.1)_{Oct}$		
	b) Draw an equivalent circuit of the 2 input XOR function using only 4 NAND gates with two inputs.		
2]	Given the following function		
٠.	F(A,B,C)=A'B+AB'C; A is the most significant bit		
	a) Implement the function using a 2/4 lines decoder with added gates		
	b) Implement the complement of the above function using 8/1 multiplexer		
3]	a) Write the ROM truth table to implement a digital multiplier that multiply 2 bit input X code by 2 bit input Y code and outputs the multiplication result as a digital code XY. Compute the ROM size		
	b) Write the PLA program table to implement the following functions; where the PLA has 4 inputs, 3 product terms and 2 outputs		

$$F_1 = \Sigma(0,2,6,7)$$

 $F_2 = \Pi(1,3,9,11,12,13,14,15)$

4] Use a 4 bit parallel full adder chip to perform the given operations in the following table

S ₁ S ₀	Operation
0 0	A+B (add)
0 1	A-B (subtract)
1 0	A+1 (increment)
1 1	A-1 (decrement)

Where: S0, S1 are two selectors bits and A, B are 4 binary bits input codes. Draw the complete circuit diagram.

- a) Show how to design a JK flip flop using T-type flip flop
 - b) Design a synchronous binary counter that repeats the following sequence {0, 2, 4}, use T-type flip flops (hint: the unused sequences are don't care terms)
- 6] A sequential circuit is described by the following state equations

$$A' = A(t+1) = A'B + X$$

 $C' = B(t+1) = CB' + A$
 $C' = C(t+1) = X' + C$

Where: X is an external input to the circuit

- a) Write the state table ·
- b) Draw the circuit diagram using JK flip flops

Page (2/2)