Name: -

ID:_____

Take g = 9.8 ms⁻² wherever needed

Q	Multiple choice questions				
1	If the dimensions of force (F) and energy (E) are ML/T^2 , and ML^2/T^2 respectively, which of the following equations is dimensionally correct? (m , x , a , v , and t represent mass, distance, acceleration, speed, and time respectively)				
	$A) x = \frac{1}{2}at^3$	$\mathbf{B)}\ v = \sqrt{Fx/m}$	$C) E = \frac{1}{2} m v$	$D) x = \frac{1}{2} v t^2$	
	How far does a boy run in 1.5 hours if his average speed is 2.23 m/s?				
2	A) 8 km	B) 3 km	C) 6 km	D) 12 km	
3	A speed boat has a constant acceleration of 2 m/s ² . If the initial velocity of the boat is 6 m/s, its displacement after 8 s is?				
3	A) 112 m	B) 124 m	C) 76 m	D) 83 m	
4	A stone is dropped from rest from the top of a tall building. After 3 s of free fall, its displacement from top of the building is:				
	A) + 54.2 m	B) -23.3 m	C) - 44.1 m	D) + 38.2 m	
	A ball is thrown upward. While the ball is in free fall, does its acceleration:				
5	A) increase	B) remain constant	C) decrease	D) increase and then decrease	
6	A displacement vector \mathbf{r} has a magnitude of 175 m and points at an angle of 50° relative to the positive x -axis. The x and y components of this vector are respectively:				
o l	A) 145 m, 117 m	B) 34 m, 56 m	C) 101 m, 90 m	D) 112 m, 134 m	
	A boy runs 145 m in a direction 20° east of north and then 105 m in a direction 35° south of east. The magnitude of his displacement is:				
7	A) 176 m	B) 95 m	C) 165 m	D) 155 m	
8	The x components of a spacecraft's initial velocity and acceleration are $v_{0x} = 22$ m/s, and $a_x = 24$ m/s ² respectively. The corresponding y components are $v_{0y} = 14$ m/s, and $a_y = 12$ m/s ² . At time t = 7 s, the magnitude of the spacecraft's final velocity is:				
	A) 123 m/s	B) 214 m/s	C) 76 m/s	D) 274 m/s	

Name: *	ID:

9	A football player kicks a ball at an angle $\theta = 40^{\circ}$ above the horizontal axis. If the initial speed of the ball is 22 m/s, the maximum height that the ball reach is:				
	A) 25 m	B) 20 m	C) 10 m	D) 15 m	
10	directs a stream of v	stance d = 50 m from a leavater from a fire hose at (as in the Figure). If the in/s, the height at which the	an angle $\theta = 30^{\circ}$ nitial speed of the		
	A) 18.7 m	B) 13.6 m	C) 5.6 m	D) 31.2 m	
	As a projectile thrown upward moves in its parabolic path, its velocity horizontal component				
11	A) decrease	B) increase	C) remain constant	D) decrease and then increase	
	A 2 kg object has acceleration $a = (i - 5j) m/s^2$. The magnitude of the resultant force acting on it is:				
12					
	A) 10.2 N	B) 8.5 N	C) 17.4 N	D) 22.2 N	
13	A 5 kg block is left at rest on the top of a rough incline surface of $\theta = 30^{\circ}$. If the block slide with an acceleration of 2 m/s ² , the frictional force acting on the block is:				
	A) 14.5 N	B) 5.4 N	C) 9.4 N	D) 17.6 N	
14	A car is traveling at 100 km/h on a horizontal road. If the coefficient of friction between the road and tires is 0.5, the minimum distance to stop the car is:				
14	A) 71.2 m	B) 78.7 m	C) 52.3 m	D) 22.5 m	
	If a fly (object 1) collides with the windshield of a fast moving bus (object 2), which object experiences an impact force with a larger magnitude:				
15	A) the fly	B) the bus	C) the same force is experienced by both	ŕ	

16	maneuver in a vertical circle is 225 m/s, and the radius weight is 700 N, his appare	executes a constant-speede (as in the figure). The speeds of the circle is 2.7 km. It ent weight at the lowest point	ed of the airplane f the pilot's true nt is:	Bottom	
	A) 5 kN If a person lifts a 20 kg bug	B) 4 kN cket from a well and does a	C) 3 kN 6 kJ of work the dept	D) 2 kN	
17 (assume the speed of the bucket is constant)					
	A) 30.6 m	B) 22.3 m	C) 15.5 m	D) 7.8 m	
18	If you push a 40 kg box at a constant speed of 1.4 m/s across a horizontal floor of μ_k = 0.25, the rate of energy dissipation by the frictional force is:				
	A) 34 W	B) 98 W	C) 137 W	D) 173 W	
19	One bullet has twice the m which of the following star A) The 1 st bullet has twice the kinetic energy than that of the 2 nd one	B) The 2 nd bullet has	C) The 1 st bullet has 0.5 times the kinetic energy than that of the 2 nd one	D) The 2 nd bullet	
	In the figure, the work do	ne by a force $F = 45 \text{ N}$ to p	ull the		
20	• ,	° for a distance $s = 75$ m is:		F	
20	• ,	•	C) 4.11 kJ	D) 1.71 kJ	
20	A) 2.17 kJ A block of mass 2 kg is kep spring (k=100 N/m) a directle released, it travels 0.25 m or	° for a distance $s = 75$ m is:	C) 4.11 kJ orizontal block is the before	D) 1.71 kJ	

22

A skier starts from rest at the top of a frictionless incline ($\theta = 20^{\circ}$) of height h = 30 m (as in the figure). The speed of the skier at the bottom of the incline is:

A) 17.1 m/s

B) 24.2 m/s

C) 7.6 m/s

D) 32.3 m/s

If we know the potential energy function U(x) for a conservative system in which a onedimensional force F(x) acts on a particle, we can find the force as:

23

A) $F(x) = -\frac{du(x)}{dx} + u(x)$ B) $F(x) = \frac{du(x)}{dx}$

C) F(x) = -du(x)

 $\mathbf{D)} \ F(x) = -\frac{du(x)}{dx}$

24

A golf ball strikes a hard, smooth floor at an angle of 30° and rebounds at the same angle (as in the figure). The mass of the ball is 0.047 kg, and its speed is 45 m/s just before and after striking the floor. The magnitude of the impulse applied to the golf ball by the floor is:

A) 2.8 N.s

B) 3.7 N.s

C) 2.8 N.s

D) 5.6 N.s

25

A ball of mass $m_1 = 5$ kg, moving to the right at a velocity of 2 m/s on a frictionless table, collides head-on with a stationary ball of mass $m_2 = 7.5$ kg. If the collision is perfect inelastic, the final velocity of the two balls after collision is:

A) 0.4 m/s

B) 1.6 m/s

C) 2.3 m/s

D) 0.8 m/s

The figures show dropping different balls onto different surfaces. In figure (a), a hard steel ball will completely rebound to its

26

original height after striking a hard surface. In figure(b), a basketball will partially rebound after striking a soft surface. In Figure (c), a basketball will not rebound at all. In which of these figures the collision is elastic:

If a particle of mass m moves with momentum P, the kinetic energy of the particle (K) is:

A) Figures (b & c)

B) Figure (a)

C) Figure (c)

D) Figure (b)

27

A) $m^2/2p$

B) P^2/m

C) P/2m

D) $P^{2}/2m$