Take $\mathrm{g}=9.8 \mathrm{~ms}^{-2}$ wherever needed

Q	Multiple choice questions			
1	If the dimensions of force (F) and energy (E) are ML/T ${ }^{2}$, and $\mathrm{ML}^{2} / \mathrm{T}^{2}$ respectively, which of the following equations is dimensionally correct? (m, x, a, v, and t represent mass, distance, acceleration, speed, and time respectively)			
2	How far does a boy run in 1.5 hours if his average speed is $2.23 \mathrm{~m} / \mathrm{s}$?			
	A) 8 km	B) 3 km	C) 6 km	D) 12 km

	A speed boat has a constant acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$. If the initial velocity of the boat is $6 \mathrm{~m} / \mathrm{s}$, its displacement after 8 s is?

A) 112 m
B) 124 m
C) 76 m
D) 83 m

A stone is dropped from rest from the top of a tall building. After 3 s of free fall, its displacement 4 from top of the building is:
A) +54.2 m
B) -23.3 m
C) -44.1 m
D) +38.2 m

A ball is thrown upward. While the ball is in free fall, does its acceleration:

5
A) increase
B) remain constant
C) decrease
D) increase and then decrease

A displacement vector \mathbf{r} has a magnitude of 175 m and points at an angle of 50° relative to the positive x-axis. The x and y components of this vector are respectively:
A) $145 \mathrm{~m}, 117 \mathrm{~m}$
B) $34 \mathrm{~m}, 56 \mathrm{~m}$
C) $101 \mathrm{~m}, 90 \mathrm{~m}$
D) $112 \mathrm{~m}, 134 \mathrm{~m}$

A boy runs 145 m in a direction 20° east of north and then 105 m in a direction 35° south of east.
7 The magnitude of his displacement is:
A) 176 m
B) 95 m
C) 165 m
D) 155 m

The x components of a spacecraft's initial velocity and acceleration are $v_{0 \mathrm{x}}=22 \mathrm{~m} / \mathrm{s}$, and $a_{x}=24$ $\mathrm{m} / \mathrm{s}^{2}$ respectively. The corresponding y components are $v_{0 y}=14 \mathrm{~m} / \mathrm{s}$, and $a_{y}=12 \mathrm{~m} / \mathrm{s}^{2}$. At time $\mathrm{t}=$ 7 s , the magnitude of the spacecraft's final velocity is:
A) $123 \mathrm{~m} / \mathrm{s}$
B) $214 \mathrm{~m} / \mathrm{s}$
C) $76 \mathrm{~m} / \mathrm{s}$
D) $274 \mathrm{~m} / \mathrm{s}$

As a projectile thrown upward moves in its parabolic path, its velocity horizontal component
A) decrease
B) increase
C) remain constant
D) decrease and then increase

A 2 kg object has acceleration $a=(i-5 j) \mathrm{m} / \mathrm{s}^{2}$. The magnitude of the resultant force acting on it is:
12
A) 10.2 N
B) 8.5 N
C) 17.4 N
D) 22.2 N

A 5 kg block is left at rest on the top of a rough incline surface of $\theta=30^{\circ}$. If the block slides down with an acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$, the frictional force acting on the block is:
13
A) 14.5 N
B) 5.4 N
C) 9.4 N
D) 17.6 N

A car is traveling at $100 \mathrm{~km} / \mathrm{h}$ on a horizontal road. If the coefficient of friction between the road and tires is 0.5 , the minimum distance to stop the car is:
A) 71.2 m
B) 78.7 m
C) 52.3 m
D) 22.5 m

If a fly (object 1) collides with the windshield of a fast moving bus (object 2), which object experiences an impact force with a larger magnitude:
A) the fly
B) the bus
C) the same force is
D) both of experienced by both them will not experience any impact force

The pilot of an airplane executes a constant-speed loop-the-loop maneuver in a vertical circle (as in the figure). The speed of the airplane is $225 \mathrm{~m} / \mathrm{s}$, and the radius of the circle is 2.7 km . If the pilot's true weight is 700 N , his apparent weight at the lowest point is:

A) 5 kN
B) 4 kN
C) 3 kN
D) 2 kN

If a person lifts a 20 kg bucket from a well and does a 6 kJ of work, the depth of the well is: (assume the speed of the bucket is constant)
A) 30.6 m
B) 22.3 m
C) 15.5 m
D) 7.8 m

If you push a 40 kg box at a constant speed of $1.4 \mathrm{~m} / \mathrm{s}$ across a horizontal floor of $\mu_{\mathrm{k}}=0.25$, the rate of energy dissipation by the frictional force is:
A) 34 W
B) 98 W
C) 137 W
D) 173 W

One bullet has twice the mass of a second bullet. If both are fired so that they have the same speed, which of the following statements is true?
A) The $1^{\text {st }}$ bullet has
B) The $2^{\text {nd }}$ bullet has
C) The $1^{\text {st }}$ bullet has
D) The $2^{\text {nd }}$ bullet twice the kinetic energy than that of the $2^{\text {nd }}$ one
twice the kinetic energy
than that of the $1^{\text {st }}$ one
0.5 times the kinetic energy than that of the $2^{\text {nd }}$ one
has 0.25 times the kinetic energy than that of the $1^{\text {st }}$ one

In the figure, the work done by a force $\mathrm{F}=45 \mathrm{~N}$ to pull the suitcase at an angle $\theta=50^{\circ}$ for a distance $\mathrm{s}=75 \mathrm{~m}$ is:

A) 2.17 kJ
B) 3.52 kJ
C) 4.11 kJ
D) 1.71 kJ

A block of mass 2 kg is kept at rest as it compresses a horizontal spring ($\mathrm{k}=100 \mathrm{~N} / \mathrm{m}$) a distance $x=10 \mathrm{~cm}$. As the block is released, it travels 0.25 m on a rough horizontal surface before stopping. The coefficient of kinetic friction between surface and block is:
A) 0.2
B) 0.4
C) 0.1
D) 0.3

A skier starts from rest at the top of a frictionless incline $\left(\theta=20^{\circ}\right)$ of height $\mathrm{h}=30 \mathrm{~m}$ (as in the figure). The speed of the skier at the bottom of the incline is:

A) $17.1 \mathrm{~m} / \mathrm{s}$
B) $24.2 \mathrm{~m} / \mathrm{s}$
C) $7.6 \mathrm{~m} / \mathrm{s}$
D) $32.3 \mathrm{~m} / \mathrm{s}$

If we know the potential energy function $U(x)$ for a conservative system in which a onedimensional force $F(x)$ acts on a particle, we can find the force as:
A) $F(x)=-\frac{d u(x)}{d x}+u(x)$
B) $F(x)=\frac{d u(x)}{d x}$
C) $F(x)=-d u(x)$
D) $F(x)=-\frac{d u(x)}{d x}$

A golf ball strikes a hard, smooth floor at an angle of 30° and rebounds at the same angle (as in the figure). The mass of the ball is 0.047 kg , and its speed is $45 \mathrm{~m} / \mathrm{s}$ just before and after striking the floor. The magnitude of the impulse applied to the golf ball by the floor is:

A) $2.8 \mathrm{~N} . \mathrm{s}$
B) $3.7 \mathrm{~N} . \mathrm{s}$
C) $2.8 \mathrm{~N} . \mathrm{s}$
D) $5.6 \mathrm{~N} . \mathrm{s}$

A ball of mass $m_{1}=5 \mathrm{~kg}$, moving to the right at a velocity of $2 \mathrm{~m} / \mathrm{s}$ on a frictionless table, collides head-on with a stationary ball of mass $\mathrm{m}_{2}=7.5 \mathrm{~kg}$. If the collision is perfect inelastic, the final velocity of the two balls after collision is:
A) $0.4 \mathrm{~m} / \mathrm{s}$
B) $1.6 \mathrm{~m} / \mathrm{s}$
C) $2.3 \mathrm{~m} / \mathrm{s}$
D) $0.8 \mathrm{~m} / \mathrm{s}$

The figures show dropping different balls onto different surfaces. In figure (a), a hard steel ball will completely rebound to its
 original height after striking a hard surface. In figure(b), a basketball will partially rebound after striking a soft surface. In Figure (c), a basketball will not rebound at all. In which of these figures the collision is elastic:
A) Figures (b \& c)
B) Figure (a)
C) Figure (c)
D) Figure (b)

(c) i

