

College of Sciences Department of Physics & Astronomy

كلية العلوم قسم الفيزياء والفلك

	Final Exam - Academic Yea	ar 1444 H – 1 st Semester			
معلومات الامتحان Exam Information					
Course name:	General Physics (PHYS 103)*	فيزياء عامة (١٠٣فيز)*	اسم المقرر:		
Exam date:	Monday 14/11/2022G	١٤٤٤/٠٤/٢ هـ الأثنين	تاريخ الامتحان:		
Exam time:	08:00 AM	۸:۰۰ صباحاً	وقت الامتحان:		

St	معلومات الطالب udent Information
Student's name:	اسم الطالب:
Student ID no.:	الرقم الجامعي:
Teacher's name:	اسم أستاذ المقرر:

تعليمات الاختبار:

- يجب إتباع تعليمات الجامعة بخصوص الإجراءات الاحترازية والتدابير الوقائية حول عدوى كورونا (COVID-19).
 - . إظهار بطاقة الطالب الجامعية.
 - الجوالات والساعات الذكية يجب أن تكون خارج قاعة الاختبار.
 - كتابة الإجابة لكل سؤال بالأحرف الكبيرة (CAPITAL LETTERS) في الجدول أدناه باستخدام قلم الحبر.
 - تسلم جميع صفحات الاختبار لأستاذ المادة / المراقب.

Write you final answer for each question (in CAPITAL LETTERS) in the following table:

Write you illian			LETTERS) in the fo	llowing table:
Q. 1	Q. 2	Q. 3	Q. 4	Q. 5
A	D	C	B	C
Q. 6	Q. 7	Q. 8	Q. 9	Q. 10
A	Α	A	В	P
Q. 11	Q. 12	Q. 13	Q. 14	Q. 15
C	В	A	В	A
Q. 16	Q. 17	Q. 18	Q. 19	Q. 20
В	В	D	C	B
Q. 21	Q. 22	Q. 23	Q. 24	Q. 25
C	D	В	В	B
Q. 26	Q. 27		•	
A	D			

I	D	:	
		- 1	

Take $g = 9.8 \text{ ms}^{-2}$ wherever needed

Q	Multiple choice questions					
	A laser light travels from the earth to the moon. How much time does the light take to reach the					
	moon [the distance betw	een the earth and the	moon is 3.844 x 10 ⁵ (kr	n) and the speed of light is		
1	2.99 x 108 (m/s)]					
	(A) 1.29 s	B) 0.78 s		D) $0.78 \times 10^3 \text{ s}$		
	A railroad train travels	forward along a straigh	t track at 80 m/s for 100	00 m and then travels at 50		
2	m/s for the next 1000 m	. The average velocity	1S:			
	A) 31.2 m/s	B) 44.7 m/s	C) 56.3 m/s	Q) 61.5 m/s		
	A worker ascending at 7	m/s in an open elevato	or 20 m above the ground	d accidently drops a stone.		
	The velocity of the stone			, , , , , , , , , , , , , , , , , , , ,		
3	****					
	A) 14 m/s	B) 18 m/s	(C) 21 m/s	D) 58 m/s		
	The magnitude, r , and d	raction, θ , for the vector	or $\vec{A} = -3.5\hat{\imath} - 2.5\hat{\imath}$ as	re recentively:		
4						
	A) 6.2 & 120°	B) 4.3 & 216°	C) 6.2 & 160°			
	For the two vectors	$\vec{A} = \hat{\imath} - 3\hat{\jmath} \& \vec{B} = -1$	$5\hat{i} + 10\hat{j}$. The direction	n of the resultant vector,		
5	$\mathbf{R} = \mathbf{A} + \mathbf{B}$ with $+ x$ -axis	is:				
	A) 45°	B) 60°	(C) 120°	D) 2000		
				D) 280°		
	A rescue plane travelling horizontally at 40 m/s dropped a package which landed on the ground					
		int of release. What is	the height of the plane t	from the point of release to		
6	the ground?					
	A) 122.5	D) 200 6				
	A) 122.5 m	B) 200.6 m	C) 50.5 m	D) 12.6 m		
				adius is 6.4x10 ⁶ m and the		
7	orbital speed of the satel	inte is off m/s. The cer	irripetal acceleration of	the satellite is:		
	A) 0.044 m/s ²	B) 0.2 m/s ²	C) 0.06 m/s ²	D) 7.3x10 ⁻⁵ m/s ²		
				*		
8	The magnitude of the ve	locity of a projectile at	its maximum height is e	equal to:		
850	A) The x component of	B) The y component	of C) Its initial veloci	ty D) Zero		
	its initial velocity	its initial velocity				

	Tro 1:					
9	If an object moves	with a varying velocity, this	phenomenon is correlat	ed to Newton's:		
	A) 1st law	B) 2 nd law	C) 3 rd law	D) None		
	A 3 kg object un	dergoes an acceleration given	ven by $\vec{a} = 1.86\hat{\imath} + 5\hat{\jmath}$	m/s ² . Find the resultant		
10	magnitude of the fo	orce:				
	A) Zero	B) 7.5 N	C) 22 N	D) 16 N		
	A 3 kg object is r	noving in a plane, with its	x and y coordinates g	iven by $x = 5t^2 - 1$ and		
	$y = 3t^3 + 2$, where x	c and y are in meters and t is	in seconds. The magnit	ude of the net force acting		
11	on this object at $t =$			1		
	A) 211 N	D) 4531				
	A) 211 N	B) 45 N	C) 165 N	D) 85 N		
	A 5 kg object placed	d on a frictionless, horizontal	table is connected	5.00 kg		
	to a string that passe	es over a pulley and then is fas	stened to a hanging			
	9 kg object, as in the	e Figure. The acceleration of	the two objects is:			
12						
				100		
				9.00 kg		
	A) 1.3 m/s ²	(B) 6.3 m/s^2	C) 5.4 m/s^2	D) 3.6 m/s ²		
	A box is pushed up a	an inclined plane at $(\theta = 30^{\circ})$	with			
	C74 00000000 0000 0000					
	an initial speed of (4.9 m/s) then it was released to move freely. If the kinetic friction coefficient is					
13	2000					
	(0.13). The distance	it will covere before it stops	S IS:			
	112					
(A) 2 m	B) 3.9 m	C) 5 m	D) 4.5 m		
	A car goes around h	norizontal curve road with co	onstant speed 14 m/s, th	ne total force on the driver		
14	has magnitude 100 N. If the speed of the car is 28 m/s, then the total force on the driver will be					
	The Residence of the Control of the					
	A) 200 N	(B) 400 N	C) 40 N	D) 10 N		

An object of mass m is swing in a vertical loop on a string with a speed v. At the top of the loop, The tension T in the string is:

15

16

17

18

19

D) zero

On a rainy day (یوم ممطر), the car begins to skid on the curve when its speed reaches 20 m/s. What is the coefficient of static friction if the radius of the curve is 45 m?

A) 0.05

B) 0.91

C) 0.18

D) 0.29

A container with a mass of m is lifted above the ground level to a height h and then returned back to the ground level. The work done by the gravitational force is:

A) -mgh

C) mgh

D) -mgh/2

A person of mass 90 kg starts from rest to slide down a rough hill of 50 m high. The person's speed at the bottom of the hill is 20 m/s. The work done by the frictional force is:

A) 17640 J

B) -14400 J

C) 13.2×10⁵ J

) -26.1 kJ

A 2 kg block slides down a frictionless incline from point A to point **B.** A force (magnitude P = 3 N) acts on the block between A and B, as shown. Points A and B are 2 m apart. If the kinetic energy of the block at A is 10 J, what is the kinetic energy of the block at B?

A) 34.6 J

B) 26.4 J

C) 23.6 J

D) 19.2 J

An archer pulls his bowstring (وتر القوس) back 0.6 m by exerting a force that increases uniformly from zero to 230 N. The work done by the archer to pull the bow is:

20

A) 46 J

B) 69 J

C) 23 J

Name:	
-------	--

I	D		
_	_	-	

	A 650 kg elevator	starts from rest. It mov	res upward for 3 s with co	nstant acceleration until it
				or motor during this period
21	is:	product zoro mist. The t	reduge power of the elevan	or motor during this period
	13.			
	A) 6489 W	B) 2023 W	C) 5894 W	D) 3745W
	A 2 kg block is the	rown upward from a p	oint 20 m above Earth's	
	surface. At what he	ight above Earth's surf	face will the gravitational	2 kg
			have increased by 500 J?	<u> </u>
	(Neglecting air resist			h_{ϵ}
				,
22				2 kg
				1
				$h_i=20m$
	-			
	A) 5.8 m	B) 25.3 m	C) 35.1	D) 45.5 m
	A single conservative	e force $\mathbf{F} = (3\hat{\mathbf{i}} + 5\hat{\mathbf{j}}) \mathbf{N}$	acts on a 4 kg particle. If the	he particle moves from the
	origin to the point ha	ving the vector position	$\mathbf{r} = (2\hat{\imath} - 3\hat{\jmath}) \mathbf{m}$. what is	the change in the potential
23	energy?			
	A) 19 J	(B) 9 J	C) -9 J	D) -19 J
			attached to a string.	Mary Mary Mary Mary Mary Mary Mary Mary
	It is released from	rest at "X" as show	vn. Neglecting all	
24	resistances, the speed	at the lowest point "Y"	'is about:	
				X
				1.85 m
	A) 0 0/-			Y
	A) 0.9 m/s	B) 6 m/s	C) 18 m/s	D) 29 m/s
			l position with its lower end	
			, and a 4 kg block is placed	
25		s then released from res	st. How far above the poin	t of release will the block
	rise?			

Nan	ne: ·	ID:	
26	The block shown is released from rest when the spring is stretched a distance d . If $k = 50$ N/m, $m = 0.50$ kg, $d = 10$ cm, and the coefficient of kinetic friction between the block and the horizontal surface is equal to 0.25. Determining the speed of the block when it first passes through the position for which the spring is unstretched. A) 71 cm/s B) 92 cm/s	000000	00 m
27	A block slides across a rough horizontal table top. A) only the kinetic energy B) only the potential energy C) only the kinetic and potential energies D) only the kinetic and internal energies	C) 61 cm/s The work done by fric	D) 82 cm/s tion changes:

The End

$$\frac{1}{2 \times 6} = \frac{1}{2 \times 6}$$

$$\frac{1}{2 \times 6}$$

$$\frac{1}{2 \times 6}$$

$$\frac{1}{4} = \frac{1}{2 \times 6}$$

$$\frac{1}{4} = \frac{1}{4} = \frac{1}$$

