Differential and Integral Calculus (MATH-205)

Final Exam/Sem II (2022-23)
Time Allowed: 3 Hours
Date: Tuesday, February 21, 2023 Maximum Marks: 40

Note: Solve all 9 questions and give DETAILED solutions. Make sure your solutions are clearly written and contain all necessary details.

Question 1: (5°) Show that the following infinite series converges and find its sum.

$$
\sum_{n=0}^{\infty}\left(\frac{9}{(3 n+1)(3 n+4)}-\frac{2^{n}}{3^{n+1}}\right)
$$

Question 2: $\mathbf{(5}^{\circ}$) Find a power series representation of $f(x)=\ln \left(8+x^{3}\right)$. Specify the radius and interval of convergence of the series.

Question 3: $\left(3^{\circ}\right)$ A constant force of magnitude 4 lb has the same direction as the vector $\mathbf{a}=\hat{i}+\hat{j}+\hat{k}$. If distance is measured in feet, find the work done if the point of application moves along the y-axis from $(0,2,0)$ to $(0,-1,0)$. Find the component of the force along the direction of displacement and interpret why the work done is negative.

Question 4: $\left(4^{\circ}\right)$ Let the lines l_{1} and l_{2} have the respective parametrizations given by

$$
\begin{array}{cccc}
l_{1}: & x=4+5 t, \quad y=3+2 t, \quad z=3 t, & t \in \mathbb{R} \\
l_{2}: & x=-5+2 v, \quad y=4-v, \quad z=1, & v \in \mathbb{R}
\end{array}
$$

Determine whether l_{1} and l_{2} are parallel, intersecting, or skew lines.
Question 5: (5°) Find the extrema of $f(x, y, z)=2 x^{2}+y^{2}+3 z^{2}$ subject to the constraint $2 x-3 y-4 z=49$. Is it a minimum or maximum?

Question 6: (3°) Let $w=2 x y$, where $x=s^{2}+t^{2}$ and $y=\frac{s}{t}$. Find w_{s}, w_{t} and $w_{s t}$. Give your answers in terms of s and t in simplified form.

Question 7: (5°) Let $z=f(x, y)$ be defined implicitly as a function of x and y by the equation

$$
x^{2}-2 y^{2}-z^{2}=0 .
$$

Find the directional derivative of f at $\left(-\frac{3}{4}, 0\right)$ in the direction of maximum increase in f.

Question 8: $\left(5^{\circ}\right)$ Evaluate the double integral $\iint_{R}\left(x^{2}+y^{2}\right) d A$, where R is the region bounded between the graphs of $x-y+1=0$ and $x+y+1=0$ and $x=0$. Sketch the region R.

Question 9: $\left(5^{\circ}\right)$ Find the volume V of the solid that lies under the graph of the equation $z=x^{2}+4$ and over the region R in the xy-plane bounded by the graphs of $x=4-y^{2}$ and $x+y=2$. Sketch the region.

- Good Luck ——

