Question No. 1:

Suppose a fair die is thrown twice, then

(1) the probability that the sum of numbers of two dice is leas than or equal to 4 is;
(A) 0.1667
(B) 0.6667
(C) 0.8333
(D) 0.1389
(2) the probability that at least one of the die shows 4 is;
(A) 0.6667
(B) 0.3056
(C) 0.8333
(D) 0.1389
(3) the probability that the sum of two dice is 4 one of them shows 1 ;
(A) $\underline{0.0556}$
(B) 0.6667
(C) 0.8333
(D) 0.1389
(4) the event $\mathrm{A}=\{$ the sum of two dice is 4$\}$ and the event $\mathrm{B}=$ \{exactly one die shows $2\}$, then $P(B \mid A)$ equal to,
(A) 0.8333
(B) 0.6667
(C) 0.3333
(D) 0.1389
(5) the event $\mathrm{A}=\{$ the sum of two dice is 4$\}$ and the event $\mathrm{B}=$ \{exactly one die shows 2\} are,
(A) Independent
(B) Dependent
(C) Disjoint
(D) None of these.

Question No. 2:

A man wants to paint his house in 3 colors. He can choose out of 6 colors. Then,
(6) the number of color settings he can make is,
(A) 216
(B) $\underline{20}$
(C) 120
(D) 10
(7) If he selected one color, then the number of color settings he can make is,
(A) 216
(B) 20
(C) 120
(D) $\underline{10}$

Question No. 3:
A random sample of 200 adults is classified according to sex and their level of education in the following table:

Education	Male	Female
Elementary	28	50
Secondary	38	45
College	22	17

If a person is selected at random from this group, then:
(8) the probability that he is a male is:
(A) 0.3182
(B) 0.44
(C) 0.66
(D) 88
(9) The probability that the person is male given that the person has a secondary education is:
(A) 0.4318
(B) 0.19
(C) 0.66
(D) $\underline{0.4578}$
(10) The probability that the person does not have a college degree given that the person is a female is:
(A) $\quad 0.8482$
(B) 0.1518
(C) 0.475
(D) 0.085

Question No. 4:

Two brothers, Ed and Jim, are the owners and operators of a small restaurant. Ed and Jim alternate between the jobs of cooking and dish washing, so that at any time, the probability that Ed is washing the dishes is
0.50 . Jim, the younger of the two brothers, is a bit clumsy. When Jim is washing the dishes, the probability that Jim breaks a dish he is washing is 0.40 . Ed, on the other hand, is very careful and the probability that Ed breaks a dish he is washing is only 0.10 .
(11) The probability that a dish will be broken is
(A) 0.667
(B) $\underline{0.25}$
(C) 0.8
(D) 0.5
(12) There is a broken dish in the kitchen of the restaurant. The probability that it was washed by Jim is;
(A) 0.667
(B) 0.25
(C) $\quad 0.8$
(D) 0.5
(13) Suppose Ed and Jim want the probability of a broken dish to equal 0.20 . then, the probability that Ed washes the dishes is,
(A) $\underline{0.667}$
(B) 0.25
(C) 0.8
(D) 0.5

Question No. 5:

(14)Two engines operate independently, if the probability that an engine will start is 0.4 , and the probability that other engine will start is 0.6 , then the probability that both will start is:
(A) 1
(B) $\underline{0.24}$
(C) 0.2
(D) 0.5
(15) If $P(B)=0.3 \quad$ and $P(A \mid B)=0.4$, then $P(A \cap B)$ equal to;
(A) 0.67
(B) 0.12
(C) 0.75
(D) 0.3

Question No. 6:

A random variable X takes the values 0 , 1,2. Assume that $E(X)=\frac{3}{2}$ and $\sigma=\frac{1}{2}$, then
(16) $E\left(X^{2}\right)=$
(A) $1 / 4$
(B) $10 / 4$
(C) $9 / 4$
(D) 2
(17) $E(2 X+3)=$
(A) $\underline{6}$
(B) 5
(C) 3
(D) $1 / 2$
(18) $E\left(5 X^{2}-2 X\right)=$
(A) $50 / 4$
(B) $19 / 2$
(C) $41 / 3$
(D) $1 / 3$
(19) $\operatorname{Var}(X+1)=$
(A) $1 / 4$
(B) $3 / 4$
(C) $\quad 1 / 4$
(D) $5 / 2$
(20) $\operatorname{Var}(2-3 X)=$
(A) $9 / 4$
(B) $10 / 4$
(C) $9 / 4$
(D) $10 / 3$
(21) $P(X=0)=$
(A) $1 / 4$
(B) $1 / 2$
(C) $1 / 3$
(D) $\underline{0}$
(22) $P(0<X<2)=$
(A) $1 / 4$
(B) $1 / 3$
(C) $1 / 2$
(D) 0
(23) $E(X \leq 1)=$
(A) $1 / 4$
(B) $5 / 4$
(C) $1 / 2$
(D) $1 / 3$

Question No. 7:

Let X be a continuous random variable with probability density function is given by
$f(x) \begin{cases}c(1-x), & 0<x<1, \\ 0, & \text { otherwise }\end{cases}$
(24) The values of c is
(A) $1 / 4$
(B) $\underline{2}$
(C) $1 / 2$
(D) 1
(25) $E(X)=$
(A) $1 / 4$
(B) $1 / 3$
(C) $9 / 4$
(D) $1 / 2$
(26) $\operatorname{Var}(X)=\sigma^{2}=$
(A) $1 / 18$
(B) $1 / 9$
(C) $1 / 27$
(D) $1 / 3$
(27) $P(X=0)=$
(A) 1
(B) $\underline{0}$
(C) $1 / 2$
(D) $1 / 6$
(28) $P(1 / 5<X<1)=$
(A) $1 / 24$
(B) $10 / 24$
(C) $15 / 25$
(D) $16 / 25$
(29) $P(|X-\mu|<2 \sigma)=$
(A) 0.76
(B) $\underline{0.96}$
(C) 0.90
(D) 0.82
(30) By using Chebyshev's theorem, then $P(|X-\mu|<2 \sigma)=$
(A) $\leq 1 / 4$
(B) $\geq 10 / 4$
(C) $\leq 3 / 4$
(D) $\geq 3 / 4$

THE END

