GE 403 Engineering Economy

Eng. Howaidi Alotaibi Civil Engineering Department E-mail halshaibani@ksu.edu.sa

Geometric Series

The geometric cash flow series occurs when the size of a cash flow increases or decreases by a fixed percent from one time period to the next.

IF $A_1 = 500$ $A_2 = 1.1 \times A_1 = 550$ $A_3 = 1.1 \times A_2 = 1.1 \times 550 = 605$ $A_t = A_1(1 \pm j)^{n-t}$ $A_{10} = A_1(1 \pm 0.1)^{10-1} = 500(1.1)^9 = 1179$ $A_{10} = A_3(1 \pm 0.1)^{10-3} = 605(1.1)^7 = 1179$

Geometric Series

$$P = A_1 \left[\frac{1 - (1 + j)^n (1 + i)^{-n}}{i - j} \right]$$

$$P = nA_1 / (1 + i)$$

$$P = A_1 (P | A_1 i\%, j\%, n)$$

$$F = A_1 \left[\frac{(1 + i)^n - (1 + j)^n}{i - j} \right]$$

$$F = nA_1 (1 + i)^{n-1}$$

$$F = A_1 (F | A_1 i\%, j\%, n)$$

geometric series, present worth factor $i \neq j$ i = j

geometric series, future worth factor $i \neq j$ i = j

You want to be able to withdraw \$1,000 from a savings account at the end of year 1, with withdrawals increasing by 10 percent each year thereafter over a total of 5 years. How much money must be on deposit right now, at the end of year 0, to just deplete the account after the five withdrawals if interest is 5 percent compounded annually?

Solution

 $P = A_1(P/A_1 i\%, j\%, n)$ $P = 1000(P/A_1 5\%, 10\%, 5)$ P = 1000(5.23753) = \$5237.53

TABLE A-b-2						0.00
j	4%	5%	6%	10%	15%	ò
n	To Find <i>P</i> Given <i>A</i> ₁ (<i>P</i> <i>A</i> ₁ i%,j%,n)	To Find P Given A_1 $(P A_1 i\%, j\%, n)$	To Find P Given A_1 $(P A_1 i\%, j\%, n)$	To Find P Given A_1 $(P A_1 i\%, j\%, n)$	To Find P Given A_1 $(P A_1 i\%, j\%, n)$	
1 2 2	0.95238 1.89569	0.95238 1.90476	0.95238 1.91383	0.95238 1.95011	0.95238 1.99546 2.12780	t the second
3 4 5	2.83002 3.75545 4.67206	2.85714 3.80952 4.76190	2.88444 3.86429 4.85348	2.99536 4.09037 5.23753	4.38912 5.75951	
6	5.57995	5./1429	5.85208	0.43932	7.26042	

$$P = A_1 \left[\frac{1 - (1+j)^n (1+i)^{-n}}{i-j} \right]$$

$$P = 1000 \left[\frac{1 - (1 + 0.1)^5 (1 + 0.05)^{-5}}{0.05 - 0.1} \right] = \$5237.53$$

You want to be able to withdraw \$1,000 from a savings account at the end of year 3, with withdrawals increasing by 10 percent each year thereafter over a total of 5 years. How much money must be on deposit right now, at the end of year 0, to just deplete the account after the five withdrawals if interest is 5 percent compounded annually?

Solution

 $P = A_1(P/A_1 \text{ i\%, j\%, n})(P/F \text{ i\%,n})$ $P = 1000(P/A_1 5\%, 10\%, 5)(P/F 5\%, 2)$ P = 1000(5.23753)(0.90703) = \$4750.6

Ali borrowed \$15,000 at 18% per year compounded annually, he paid off

the loan over a 5-year period with annual payments. Each successive

payment was 10% less than the preceding payment. How much was the

fifth payment.

$$0 = A_1 \left[\frac{1 - (1 + (-0.1))^5 (1 + 0.18)^{-5}}{0.18 - (-0.1)} \right] \Longrightarrow A_1 = \$5661.2$$

$$A_t = A_1 (1 - j)^{t-1}$$
$$A_5 = A_1 (1 - 0.1)^{5-1}$$
$$A_5 = 5661.2(1 - 0.1)^4 \Longrightarrow A_5 = \$3714.4$$