GE 403
 Engineering Economy

Eng. Howaidi Alotaibi
Civil Engineering Department
E-mail halshaibani@ksu.edu.sa

Gradient Series

The gradient series arises when the value of an individual cash flow differs from the preceding cash flow by a constant, G.

$$
\begin{array}{ll}
P=G\left[\frac{1-(1+n i)(1+i)^{-n}}{i^{2}}\right] & \mathrm{P}=\mathrm{G}(\mathrm{P} / \mathrm{G} \mathrm{i} \%, \mathrm{n}) \\
A=G\left[\frac{(1+i)^{n}-(1+n i)}{i(1+i)^{n}-1}\right] & \mathrm{A}=\mathrm{G}(\mathrm{~A} / \mathrm{G} \mathrm{i} \%, \mathrm{n}) \\
F=G\left[\frac{(1+i)^{n}-(1+n i)}{i^{2}}\right] & \begin{array}{c}
\text { not provided } \\
\text { in table }
\end{array}
\end{array}
$$

Ex. Consider the following cash flow profile:

EOY	Cash Flow	EOY	Cash Flow	EOY	Cash Flow
$\mathbf{0}$	$-\$ 75,000$	3	$\$ 9,000$	6	$\$ 18,000$
1	$\$ 3,000$	4	$\$ 12,000$	7	$\$ 21,000$
2	$\$ 6,000$	5	$\$ 15,000$	$\mathbf{8}$	$\$ 24,000$

Using a gradient series factor, determine the present worth equivalent for the cash flow series using an annual compound interest rate of 6 percent.

Solution

$$
\begin{aligned}
& \mathrm{Pw}=-75,000+3000(\mathrm{P} / \mathrm{A} 6 \%, 8)+3000(\mathrm{P} / \mathrm{G} 6 \%, 8) \\
& \mathrm{Pw}=-75,000+3000(6.20979)+3000(19.84158) \\
& \mathrm{Pw}=\$ 3154.11
\end{aligned}
$$

Ex. 2

A $\$ 90,000$ investment is made. Over a 5 -year period, return of $\$ 30,000$ occurs at the end of the first year. Each successive year yields a return that is $\$ 3,000$ less than the previous year's return. If money is worth 5 percent, use a gradient series factor to determine the equivalent present worth for the investment.

Solution

$\mathrm{Pw}=-90,000+30,000(\mathrm{P} / \mathrm{A} 5 \%, 5)-3000(\mathrm{P} / \mathrm{G} 5 \%, 5)$
$\mathrm{Pw}=-90,000+30,000(4.32948)-3000(8.23692)$
$\mathrm{Pw}=\$ 15173$

Solution

Ex. 3

A $\$ 90,000$ investment is made. Over a 5 -year period, return of $\$ 30,000$ occurs at the end of the third year. Each successive year yields a return that is $\$ 3,000$ less than the previous year's return. If money is worth 5 percent, use a gradient series factor to determine the equivalent present worth for the investment.

Solution

$$
\begin{aligned}
& \mathrm{Pw}=-90,000+[30,000(\mathrm{P} / \mathrm{A} 5 \%, 5)-3000(\mathrm{P} / \mathrm{G} 5 \%, 5)] \\
& \mathrm{Pw}=-90,000+[30,000(4.32948)-3000(8.23692)] \\
& \mathrm{Pw}=\$ 5,395.7
\end{aligned}
$$

Solution

