GE 403 Engineering Economy

Eng. Howaidi Alotaibi Civil Engineering Department E-mail halshaibani@ksu.edu.sa

Gradient Series

The gradient series arises when the value of an individual cash flow differs from the preceding cash flow by a constant, G.

Ex. Consider the following cash flow profile:

EOY	Cash Flow	EOY	Cash Flow	EOY	Cash Flow
0	-\$75,000	3	\$9,000	6	\$18,000
1	\$3,000	4	\$12,000	7	\$21,000
2	\$6,000	5	\$15,000	8	\$24,000

Using a gradient series factor, determine the present worth equivalent for the cash flow series using an annual compound interest rate of 6 percent.

Pw = -75,000+3000(P/A 6%, 8) + 3000(P/G 6%, 8)Pw = -75,000+3000(6.20979) + 3000(19.84158)Pw = \$3154.11

A \$90,000 investment is made. Over a 5-year period, return of \$30,000 occurs at the end of the first year. Each successive year yields a return that

is \$3,000 less than the previous year's return. If money is worth 5 percent,

use a gradient series factor to determine the equivalent present worth for

the investment.

Pw = -90,000+30,000(P/A 5%, 5) - 3000(P/G 5%, 5)Pw = -90,000+30,000(4.32948) - 3000(8.23692)Pw = \$15173

A \$90,000 investment is made. Over a 5-year period, return of \$30,000 occurs at the end of the third year. Each successive year yields a return that is \$3,000 less than the previous year's return. If money is worth 5 percent, use a gradient series factor to determine the equivalent present worth for the investment.

Pw = -90,000 + [30,000(P/A 5%, 5) - 3000(P/G 5%, 5)](P/F 5%, 2)Pw = -90,000 + [30,000(4.32948) - 3000(8.23692)](0.90703)Pw = \$5,395.7

