PHYS 201
Dr. Vasileios Lempesis
Handout -4: Problems in vectors

1) Let $V=R^{3}=\{(a, b, c) \mid a, b, c \in R\}$. We are going to check if the following subsets of $R^{3}$ are vector subspaces:

$$
\begin{aligned}
& W_{1}=\{(a, b, 0) \mid a, b \in R\} \\
& W_{2}=\{(a, b, 1) \mid a, b \in R\} \\
& W_{3}=\{(a, b, 1) \mid a, b \in R\} \cup\{(0,0,0)\} \\
& W_{4}=\{(a, a, a) \mid a \in R\} \\
& W_{5}=\{(a, b, a+2 b) \mid a, b \in R\}
\end{aligned}
$$

2) Let $V=M_{3 \times 3}$, the vector space of $3 \times 3$ matrices in $R$. Check if the subset of all the upper triangular matrices

$$
\left.\left.W=\left\{\begin{array}{ccc}
a & b & c \\
0 & d & e \\
0 & 0 & f
\end{array}\right) \right\rvert\, a, b, c, d, e, f \in R\right\}
$$

is a vector subspace of $V$ :
3) Let $V=R^{3}=\{(a, b, c) \mid a, b, c \in R\}$ and $u_{1}=(1,0,0), u_{2}=(0,1,0)$. The space which is produced by the two vectors is:
4) We consider the vector space $R^{2}$. Check if the following vectors are linearly independent or not.
a) $u_{1}=(1,2)$ and $u_{2}=(2,4)$
b) $u_{1}=(1,0)$ and $u_{2}=(0,1)$
c) $u_{1}=(1,0)$ and $u_{2}=(1,1)$
5) We consider the vector space $V=M_{2 \times 2}=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a, b, c, d \in R\right\}$ and the vectors:

$$
u_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), u_{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), u_{3}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

a) Find the subspace $\left\langle u_{1}, u_{2}, u_{3}\right\rangle$
b) Show that $u_{1}, u_{2}, u_{3}$ are linearly independent
c) If $u_{4}=\left(\begin{array}{ll}0 & 0 \\ 2 & 1\end{array}\right)$, show that $u_{1}, u_{2}, u_{3}, u_{4}$ are linearly dependent.
6) We consider the vector space $R^{3}$. The vectors

$$
e_{1}=(1,0,0), e_{2}=(0,1,0), e_{3}=(0,0,1)
$$

and the vector $u=(7,8,9)$ :

$$
u=7 e_{1}+8 e_{2}+9 e_{3} .
$$

Consider the vector $e_{4}=(1,1,1)$. Show that $u=(7,8,9)$ is not written in a unique way as a linear combination of $e_{1}, e_{2}, e_{3}, e_{4}$ :
7) Show that the following vectors are a base of $R^{3}$

$$
u_{1}=(1,0,0), u_{2}=(1,1,0), u_{3}=(1,1,1)
$$

8) Consider the vector space

$$
M_{2 x 3}=\left\{\left.\left(\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right) \right\rvert\, a, b, c, d, e, f \in R\right\} .
$$

Show that the vectors

$$
\begin{aligned}
& e_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), e_{2}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right), e_{3}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \\
& e_{4}=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), e_{5}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), e_{6}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

are a base of the space.
9) We consider the vector space $R^{3}$. The vectors

$$
e_{1}=(1,0,0), e_{2}=(0,1,0), e_{3}=(0,0,1)
$$

form a base of $R^{3}$ :
10) In the same space $R^{3}$ we are going to show that that

$$
u_{1}=(1,0,0), u_{2}=(1,1,0), u_{3}=(1,1,1)
$$

form a base.
11) We consider the vector space

$$
M_{2 \times 3}=\left\{\left.\left(\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right) \right\rvert\, a, b, c, d, e, f \in R\right\} .
$$

Show that the vectors

$$
\begin{aligned}
& e_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), e_{2}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right), e_{3}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \\
& e_{4}=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), e_{5}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), e_{6}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

form a base.

