Exercise 1: construct the truth table of proposition $(p \vee \sim q) \rightarrow(\sim q \leftrightarrow r)$

Exercise 2: complete the following truth table

p	q	$\sim q$	$p \wedge q$	$p \rightarrow(p \wedge q)$	$\sim[p \rightarrow(p \wedge q)]$	$\sim q \vee \sim[p \rightarrow(p \wedge q)]$

Exercise 3: show that $p \vee(q \wedge r)$ and $(p \vee q) \wedge(p \vee r)$ are logically equivalent.

p	q	r	$q \wedge r$	$p \vee(q \wedge r)$	$p \vee q$	$p \vee r$	$(p \vee q) \wedge(p \vee r)$

Exercise 4: Decide whether the proposition is tautology or contradiction or contingency $p \wedge \sim[q \rightarrow(p \vee r)]$

p	q	r	$p \vee r$	$q \rightarrow(p \vee r)$	$\sim[q \rightarrow(p \vee r)]$	$p \wedge \sim[q \rightarrow(p \vee r)]$

Exercise 5: Without using truth tables, show that $p \rightarrow[(p \wedge q) \vee \sim q]$ is a tautology.

Exercise 6: Without using truth tables, show that

$$
(p \rightarrow q) \vee(p \rightarrow r) \equiv p \rightarrow(q \vee r)
$$

Exercise 7: Using logic low, show that $(p \wedge \sim r) \rightarrow q \equiv(p \wedge \sim q) \rightarrow r$

Exercise 8: Without using truth tables, show that the proposition $\sim(x \rightarrow \sim y)$ and $x \wedge[x \rightarrow(y \vee \sim x)]$

Exercise 9: State the convers, the invers, and the contrapositive for proposition:
"If a and b are odd number then $(a+b)$ is even number"
The converse is:

The inverse is:

The contrapositive is:

Exercise 10: Determine the truth value of each of these statements and justify your answer.
i. $\forall x \in \mathbb{R}, x^{2}-4 x+4 \geq 0$
ii. $\exists x \in\{1,2,3,4\}, 2^{x}<x$!
iii. $\quad \forall x \in \mathbb{R}, x^{2}-5 x+6 \geq 0$
iv. $\exists x \in \mathbb{R}, x^{4}<x^{2}$

