MATH 151

Methods of Proof

Lecture 2

By Khaled A Tanash

ktanash@ksu.edu.sa

 \checkmark r is rational number if $r = \frac{a}{b}$, $a \in \mathbb{Z}$, $b \in \mathbb{Z}^+$, g c d (a, b) = 1

A divisor *b* (*a*/*b*) if and only if there exist integer *c* such that *b* = *a*.*c* where *a*, *b* ∈ \mathbb{Z} ; *a* ≠ 0.

A is congruent to b modulo n , a ≡ b(mod n) if and only if n / (a - b) if
and only if $(a - b) = n \cdot c$; c ∈ Z

Math 151

Exercise 1: Use direct proof to show that if x is an odd integer number, then $x^2 = 8m + 1$ where m is an integer.

Exercise 2: Use direct proof to show that if *n* is an odd integer, then n^2 is an odd

Math 151

Exercise 3: Use direct proof to show that if n as an odd number, then $n^2 \equiv 1 \pmod{4}$.

Exercise 4: Let *a* and *b* be real numbers, prove by contraposition if a + 2b > 10, then a > 4 or b > 3

Exercise 5: Use a proof by contraposition to show that if 2/m.n where $m, n \in \mathbb{Z}$ then 2/m or 2/n.

Exercise 6: Let r, s and t be nonzero real number. Prove by contraposition the if rs = t, then r > 0 or s > 0 or t > 0.

Math	151
------	-----

Exercise 7: Let *n* be an integer. Show that if $3n^2$ is even then n is even

Exercise 8: Use a Proof by contraposition to show that if x.y is even number where $x, y \in \mathbb{Z}$, then x is even or y is even.

Math 151

Exercise 9: Prove that if *a* is an integer where $5 \setminus a$ then $5 \setminus (a+20)$ using a proof by contraposition.

Exercise 10: Let 6/m; $m \in \mathbb{Z}$. Use a proof by contraposition to show that if $3 \setminus (m+n)$; $n \in \mathbb{Z}$ then $3 \setminus n$

Math 151	Methods of Proof	Khaled A Tanash
----------	-------------------------	-----------------

Exercise 11: Prove that $\sqrt{3}$ is irrational number using a proof by contradiction.

Exercise 12: Assume that $\sqrt{7}$ is irrational numbers. Give a Prove by contradiction to show that $\frac{2+\sqrt{7}}{3}$ is irrational.

Math	151
------	-----

Exercise 13: Let $x, y, z \in \mathbb{R}$ such that 2x + y + 3z = 21, use a proof by contradiction to show that $x \ge 4$ or $y \ge 7$ or $z \ge 2$.

Exercise 14: Let *m* be an odd integer. Give a proof by contradiction to show that $m^2 - 3$ is not a multiple of 4

Exercise 15: Let *a* and *b* be positive real numbers such that $a^3b^2 > 72$. Give a proof by contradiction to show that a > 2 or b > 3

Exercise 16: Use proof by cases to prove that $x^2 + x$ is even number where x is an integer.

Exercise 17: Show that if $3/x^2$ then 3/x