MATH 151

Methods of Proof
 Lecture 2

By Khaled A Tanash

ktanash@ksu.edu.sa
$\Rightarrow r$ is rational number if $r=\frac{a}{b}, a \in \mathbb{Z}, b \in \mathbb{Z}^{+}, g . c . d(a, b)=1$
$>a$ divisor $b(a / b)$ if and only if there exist integer c such that $b=a . c$ where $a, b \in \mathbb{Z} ; a \neq 0$.
$>a$ is congruent to b modulo $n, a \equiv b(\bmod n)$ if and only if $n /(a-b)$ if and only if $(a-b)=n . c ; c \in \mathbb{Z}$

Exercise 1: Use direct proof to show that if x is an odd integer number, then $x^{2}=8 m+1$ where m is an integer.

Exercise 2: Use direct proof to show that if n is an odd integer, then n^{2} is an odd

Exercise 3: Use direct proof to show that if n as an odd number, then
$n^{2} \equiv 1(\bmod 4)$.

Exercise 4: Let a and b be real numbers, prove by contraposition if $a+2 b>10$, then $a>4$ or $b>3$

Exercise 5: Use a proof by contraposition to show that if $2 / m . n$ where $m, n \in \mathbb{Z}$ then $2 / m$ or $2 / n$.

Exercise 6: Let r, s and t be nonzero real number. Prove by contraposition the if $r s=t$, then $r>0$ or $s>0$ or $t>0$.

Exercise 7: Let n be an integer. Show that if $3 n^{2}$ is even then n is even

Exercise 8: Use a Proof by contraposition to show that if $x . y$ is even number where $x, y \in \mathbb{Z}$, then x is even or y is even.

Exercise 9: Prove that if a is an integer where $5 \times a$ then $5 \times(a+20)$ using a proof by contraposition.

Exercise 10: Let $6 / m ; m \in \mathbb{Z}$. Use a proof by contraposition to show that if $3 X(m+n) ; n \in \mathbb{Z}$ then $3 \times n$

Exercise 11: Prove that $\sqrt{3}$ is irrational number using a proof by contradiction.

Exercise 12: Assume that $\sqrt{7}$ is irrational numbers. Give a Prove by contradiction to show that $\frac{2+\sqrt{7}}{3}$ is irrational.

Exercise 13: Let $x, y, z \in \mathbb{R}$ such that $2 x+y+3 z=21$, use a proof by contradiction to show that $x \geq 4$ or $y \geq 7$ or $z \geq 2$.

Exercise 14: Let m be an odd integer. Give a proof by contradiction to show that $m^{2}-3$ is not a multiple of 4

Exercise 15: Let a and b be positive real numbers such that $a^{3} b^{2}>72$. Give a proof by contradiction to show that $a>2$ or $b>3$

Exercise 16: Use proof by cases to prove that $x^{2}+x$ is even number where x is an integer.

Exercise 17: Show that if $3 / x^{2}$ then $3 / x$

