MATH 151

Mathematical Induction

Lecture 3

By Khaled A Tanash

ktanash@ksu.edu.sa

Exercise 1: Use mathematical induction to show that the number $5 n^{2}-3 n$ is even for all integers $n \geq 0$.

Exercise 2: Use induction to show that $n^{2}-3 n+5$ is an odd integer for all $n \geq 2$

Exercise 3: Use mathematical induction to show that

$$
1.2+2 \cdot 3+3 \cdot 4+\ldots+n \cdot(n+1)=\frac{n(n+1)(n+2)}{3} \text { for } n \geq 1(n \text { is integer })
$$

Exercise 4: Prove that $\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right) \ldots\left(1-\frac{1}{n^{2}}\right)=\frac{n+1}{2 n}$ for all integers $n \geq 2$.

Exercise 5: Prove that $3^{n-1} \geq 2^{n}+1$ for all integers $n \geq 3$.

Exercise 6: Use mathematical induction to show that $n!>2^{n+1}$ for all integers $n \geq 5$.

Exercise 7: Prove that $3 /\left(4^{n}+2\right)$ for all integers $n \geq 0$

Exercise 8: Use mathematical induction to show that $2^{n} \geq n+12$ for all integers $n \geq 4$.

Exercise 9: Use mathematical induction to show that
$1.2^{1}+2.2^{2}+3.2^{3}+\ldots+n .2^{n}=2+(n-1) 2^{n+1}$ for all integers $n \geq 1$.

Exercise 10: Prove that

$$
1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\frac{n^{2}(n+1)^{2}}{4} \text { for all integers } n \geq 1
$$

Exercise 11: Use mathematical induction to show that $n^{2}-6 n+8 \geq 0$ for all integers $n \geq 4$.

Exercise 12: Use mathematical induction to show that

$$
1+4+7+\ldots+(3 n-2)=\frac{n(3 n-1)}{2} \text { for all integers } n \geq 1
$$

Exercise 13: Prove that

$$
1+2+2^{2}+2^{3}+\ldots+2^{n}=2^{n+1}-1 \text { for all integers } n \geq 0
$$

Exercise 14: Let $\left\{u_{n}\right\}$ be a sequence defined by the equations $u_{1}=0, u_{2}=1$ and $u_{n+1}=3 u_{n}-2 u_{n-1}-1$ for $n=2,3,4, \ldots$ show that $u_{n}=n-1$ for all $n \geq 1$.

Exercise 15: Let $\left\{u_{n}\right\}$ be a sequence defined by the equations $u_{0}=12, u_{1}=21$ and $u_{n+1}=\frac{\left(u_{n}\right)^{2} u_{n-1}}{9}$ for $n=1,2,3, \ldots$ show that u_{n} is an integer divisible by 3 for all $n \geq 0$.

Exercise 16: Let $\left\{u_{n}\right\}$ be a sequence defined by the equations $u_{1}=2, u_{2}=5$ and $u_{n+1}=2 u_{n}-u_{n-1}+2$ for $n=2,3,4, \ldots$ show that $u_{n}=n^{2}+1$ for all $n \geq 1$.

Exercise 17: Let $\left\{a_{n}\right\}$ be a sequence defined as $\left\{\begin{array}{l}a_{0}=2, \quad a_{1}=4 \\ a_{n}=4 a_{n-1}-3 a_{n-2}, \quad \forall n \geq 2\end{array}\right.$ show that $a_{n}=1+3^{n}$ for all integers $n \geq 0$.

Exercise 18: Let $\left\{a_{n}\right\}$ be a sequence defined as $\left\{\begin{array}{l}a_{0}=1, a_{1}=2, a_{2}=3 \\ a_{n}=a_{n-1}+a_{n-2}+2 a_{n-3}, \quad \forall n \geq 3\end{array}\right.$ show that $a_{n} \leq 3^{n}$ for all integers $n \geq 0$.

Exercise 19: Let $\left\{u_{n}\right\}$ be a sequence defined by the equations $u_{1}=1, u_{2}=2, u_{3}=3$ and $u_{n}=\frac{u_{n-1}+u_{n-2}+u_{n-3}}{3}$ for all $n \geq 4$ show that $1 \leq u_{n} \leq 3$ for all $n \geq 1$.

Exercise 20: Let $\left\{u_{n}\right\}$ be a sequence defined by the equations $u_{1}=2, u_{2}=4$ and $u_{n}=\frac{2 u_{n-1}+u_{n-2}+8}{3}$ for all $n \geq 3$ show that $u_{n}=2 n$ for all $n \geq 1$.

Exercise 21: Let $\left\{a_{n}\right\}$ be a sequence defined as $\left\{\begin{array}{l}a_{0}=2, a_{1}=5 \\ a_{n+1}=5 a_{n}-4 a_{n-1}, \quad \forall n \geq 1\end{array}\right.$ show that $a_{n}=1+4^{n}$ for all integers $n \geq 0$.

Exercise 22: Let $\left\{a_{n}\right\}$ be a sequence defined as $\left\{\begin{array}{l}a_{0}=2, \quad a_{1}=5 \\ a_{n+1}=5 a_{n}-6 a_{n-1}, \quad \forall n \geq 1\end{array}\right.$ show that $a_{n}=2^{n}+3^{n}$ for all integers $n \geq 0$.

Exercise 23: Let $\left\{u_{n}\right\}$ be a sequence defined by the equations
$u_{1}=2, u_{2}=3, u_{3}=4$ and $u_{n+1}=\frac{1}{3}\left(u_{n}+u_{n-1}+u_{n-2}\right)$ for all $n \geq 3$ show that $2 \leq u_{n} \leq 4$ for all $n \geq 0$.

