MATH 151

Mathematical Induction

Lecture 3

By Khaled A Tanash

ktanash@ksu.edu.sa

Exercise 1: Use mathematical induction to show that the number $5n^2 - 3n$ is even for all integers $n \ge 0$.

Exercise 2: Use induction to show that $n^2 - 3n + 5$ is an odd integer for all $n \ge 2$

Exercise 3: Use mathematical induction to show that

$$1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + n \cdot (n+1) = \frac{n(n+1)(n+2)}{3}$$
 for $n \ge 1$ (*n* is integer)

Exercise 4: Prove that $\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\dots\left(1-\frac{1}{n^2}\right) = \frac{n+1}{2n}$ for all integers $n \ge 2$.

Exercise 5: Prove that $3^{n-1} \ge 2^n + 1$ for all integers $n \ge 3$.

Exercise 6: Use mathematical induction to show that $n! > 2^{n+1}$ for all integers $n \ge 5$.

Exercise 7: Prove that $3/(4^n + 2)$ for all integers $n \ge 0$

Exercise 8: Use mathematical induction to show that $2^n \ge n+12$ for all integers $n \ge 4$.

Exercise 9: Use mathematical induction to show that

 $1.2^{1} + 2.2^{2} + 3.2^{3} + ... + n.2^{n} = 2 + (n-1)2^{n+1}$ for all integers $n \ge 1$.

Exercise 10: Prove that

$$1^{3} + 2^{3} + 3^{3} + ... + n^{3} = \frac{n^{2}(n+1)^{2}}{4}$$
 for all integers $n \ge 1$

Exercise 11: Use mathematical induction to show that $n^2 - 6n + 8 \ge 0$ for all integers $n \ge 4$.

Exercise 12: Use mathematical induction to show that

$$1+4+7+...+(3n-2) = \frac{n(3n-1)}{2}$$
 for all integers $n \ge 1$.

•

Exercise 13: Prove that

$$1+2+2^2+2^3+...+2^n=2^{n+1}-1$$
 for all integers $n \ge 0$

Exercise 14: Let $\{u_n\}$ be a sequence defined by the equations $u_1 = 0, u_2 = 1$ and $u_{n+1} = 3u_n - 2u_{n-1} - 1$ for n = 2, 3, 4, ... show that $u_n = n - 1$ for all $n \ge 1$.

Exercise 15: Let $\{u_n\}$ be a sequence defined by the equations $u_0 = 12, u_1 = 21$ and $u_{n+1} = \frac{(u_n)^2 u_{n-1}}{9}$ for n = 1, 2, 3, ... show that u_n is an integer divisible by 3 for all $n \ge 0$.

Exercise 16: Let $\{u_n\}$ be a sequence defined by the equations $u_1 = 2, u_2 = 5$ and $u_{n+1} = 2u_n - u_{n-1} + 2$ for n = 2, 3, 4, ... show that $u_n = n^2 + 1$ for all $n \ge 1$.

Exercise 17: Let $\{a_n\}$ be a sequence defined as $\begin{cases} a_0 = 2 & , a_1 = 4 \\ a_n = 4a_{n-1} - 3a_{n-2} & , \forall n \ge 2 \end{cases}$

show that $a_n = 1 + 3^n$ for all integers $n \ge 0$.

Exercise 18: Let $\{a_n\}$ be a sequence defined as $\begin{cases} a_0 = 1, a_1 = 2, a_2 = 3\\ a_n = a_{n-1} + a_{n-2} + 2a_{n-3}, \forall n \ge 3 \end{cases}$ show that $a_n \le 3^n$ for all integers $n \ge 0$.

Exercise 19: Let $\{u_n\}$ be a sequence defined by the equations

 $u_1 = 1, u_2 = 2, u_3 = 3$ and $u_n = \frac{u_{n-1} + u_{n-2} + u_{n-3}}{3}$ for all $n \ge 4$ show that $1 \le u_n \le 3$ for all $n \ge 1$.

Exercise 20: Let $\{u_n\}$ be a sequence defined by the equations $u_1 = 2, u_2 = 4$ and $u_n = \frac{2u_{n-1} + u_{n-2} + 8}{3}$ for all $n \ge 3$ show that $u_n = 2n$ for all $n \ge 1$.

Exercise 21: Let $\{a_n\}$ be a sequence defined as $\begin{cases} a_0 = 2 & , a_1 = 5 \\ a_{n+1} = 5a_n - 4a_{n-1} & , \forall n \ge 1 \end{cases}$ show that $a_n = 1 + 4^n$ for all integers $n \ge 0$.

Exercise 22: Let $\{a_n\}$ be a sequence defined as $\begin{cases} a_0 = 2 & , a_1 = 5 \\ a_{n+1} = 5a_n - 6a_{n-1} & , \forall n \ge 1 \end{cases}$ show that $a_n = 2^n + 3^n$ for all integers $n \ge 0$.

Exercise 23: Let $\{u_n\}$ be a sequence defined by the equations

 $u_1 = 2, u_2 = 3, u_3 = 4$ and $u_{n+1} = \frac{1}{3} (u_n + u_{n-1} + u_{n-2})$ for all $n \ge 3$ show that $2 \le u_n \le 4$ for all $n \ge 0$.