MATH 151

Properties of Relations

Lecture 5

By Khaled A Tanash

ktanash@ksu.edu.sa

- ▶ Relation *R* on a set *A* is called *reflexive* if $\forall a \in A$; *a R a*
- **Relation** R on a set A is called symmetric if $aRb \Rightarrow bRa$
- **Relation** *R* **on a set** *A* **is called** *antisymmetric* **if** a R b **and** $b R a \Rightarrow a = b$
- **Relation** R on a set A is called *transitive* if a R b and $b R c \Rightarrow a R c$
- ▶ Relation *R* on a set *A* is called *transitive* if $R^2 \subseteq R$

Exercise 1: Let $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ be the matrix of the relation R. Determine whether the

relation is reflexive, symmetric, antisymmetric, transitive.

0,110,0. **Exercise 2:** Let $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ be the matrix of the relation R. Determine whether the

relation is reflexive, symmetric, antisymmetric, transitive.

Exercise 3: Let $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix}$ be the matrix of the relation R. Determine whether the

relation is reflexive, symmetric, antisymmetric, transitive.

Exercise 4: Let $R = \{(x, x), (y, x), (y, y), (y, z), (z, y)\}$ be a relation on $A = \{x, y, z\}$. Determine whether the relation is reflexive, symmetric, antisymmetric, transitive.

Exercise 5: Let $R = \{(a,a), (a,b), (a,c), (b,a), (c,c)\}$ be a relation on $A = \{a,b,c\}$. Determine whether the relation is reflexive, symmetric, antisymmetric, transitive.

Exercise 6: Let $R = \{(2,1), (2,2), (3,1), (3,2), (3,3)\}$ be a relation on $A = \{1,2,3\}$. Determine whether the relation is reflexive, symmetric, antisymmetric, transitive.

Exercise 7: Let *R* be a relation defined on the set \mathbb{Z} as follows: $x R y \Leftrightarrow (x + y)$ is odd. Determine whether the relation is reflexive, symmetric, antisymmetric, transitive.

Kugled & Laugsh

Exercise 8: Let *R* be a relation defined on the set \mathbb{Z} as follows: $x R y \Leftrightarrow x + y \ge 12$. Determine whether the relation is reflexive, symmetric, antisymmetric, transitive.

Kugled & Laugsh

Exercise 9: Let *R* be a relation defined on the set \mathbb{Z}^+ as follows: $m R \ n \Leftrightarrow m.n$ is even. Determine whether the relation is reflexive, symmetric, antisymmetric, transitive.

Exercise 10: Let *R* be a relation defined on the set \mathbb{Z} as follows: $x R y \Leftrightarrow x = 2y$. Determine whether the relation is reflexive, symmetric, antisymmetric, transitive.

Exercise 11: Let *R* be a relation defined on the set \mathbb{Q} as follows: $x R y \Leftrightarrow (x - y) \in z$. Determine whether the relation is reflexive, symmetric, antisymmetric, transitive.

Exercise 12: Let *R* be a relation defined on the set \mathbb{Z}^+ as follows: $x R \ y \Leftrightarrow \left(\frac{x}{y}\right)$. Determine whether the relation is reflexive, symmetric, antisymmetric, transitive.

Exercise 13: Let *R* be a relation defined on the set \mathbb{N} as follows: $m R \ n \Leftrightarrow m - n > 1$. Determine whether the relation is reflexive, symmetric, antisymmetric, transitive.

Exercise 14: Let *R* be a relation defined on the set \mathbb{N} as follows: $mR \ n \Leftrightarrow 3/(m.n)$. Determine whether the relation is reflexive, symmetric, antisymmetric, transitive.

Exercise 15: Let *R* be a relation defined on the set \mathbb{Z}^+ as follows: $mR \ n \Leftrightarrow m + n = 20$. Determine whether the relation is reflexive, symmetric, antisymmetric, transitive.

Exercise 16: Let *R* be a relation defined on the set \mathbb{N} as follows: $mR \ n \Leftrightarrow 6/(m.n)$. Determine whether the relation is reflexive, symmetric, antisymmetric, transitive.

Kugled & Laugsh