MATH 151

Properties of Relations

Lecture 5

By Khaled A Tanash

ktanash@ksu.edu.sa
$>$ Relation R on a set A is called reflexive if $\forall a \in A ; a R a$
$>$ Relation R on a set A is called symmetric if $a R b \Rightarrow b R a$
$>$ Relation R on a set A is called antisymmetric if $a R b$ and $b R a \Rightarrow a=b$
$>$ Relation R on a set A is called transitive if $a R b$ and $b R c \Rightarrow a R c$
> Relation R on a set A is called transitive if $R^{2} \subseteq R$

Exercise 1: Let $\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$ be the matrix of the relation R. Determine whether the relation is reflexive, symmetric, antisymmetric, transitive.

Exercise 2: Let $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$ be the matrix of the relation R. Determine whether the relation is reflexive, symmetric, antisymmetric, transitive.

Exercise 3: Let $\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1\end{array}\right)$ be the matrix of the relation R. Determine whether the relation is reflexive, symmetric, antisymmetric, transitive.

Exercise 4: Let $R=\{(x, x),(y, x),(y, y),(y, z),(z, y)\}$ be a relation on $A=\{x, y, z\}$. Determine whether the relation is reflexive, symmetric, antisymmetric, transitive.

Exercise 5: Let $R=\{(a, a),(a, b),(a, c),(b, a),(c, c)\}$ be a relation on $A=\{a, b, c\}$. Determine whether the relation is reflexive, symmetric, antisymmetric, transitive.

Exercise 6: Let $R=\{(2,1),(2,2),(3,1),(3,2),(3,3)\}$ be a relation on $A=\{1,2,3\}$. Determine whether the relation is reflexive, symmetric, antisymmetric, transitive.

Exercise 7: Let R be a relation defined on the set \mathbb{Z} as follows: $x R y \Leftrightarrow(x+y)$ is odd. Determine whether the relation is reflexive, symmetric, antisymmetric, transitive.

Exercise 8: Let R be a relation defined on the set \mathbb{Z} as follows: $x \quad y \Leftrightarrow x+y \geq 12$. Determine whether the relation is reflexive, symmetric, antisymmetric, transitive.

Exercise 9: Let R be a relation defined on the set \mathbb{Z}^{+}as follows: $m R n \Leftrightarrow m . n$ is even. Determine whether the relation is reflexive, symmetric, antisymmetric, transitive.

Exercise 10: Let R be a relation defined on the set \mathbb{Z} as follows: $x R y \Leftrightarrow x=2 y$. Determine whether the relation is reflexive, symmetric, antisymmetric, transitive.

Exercise 11: Let R be a relation defined on the set \mathbb{Q} as follows: $x R y \Leftrightarrow(x-y) \in z$
. Determine whether the relation is reflexive, symmetric, antisymmetric, transitive.

Exercise 12: Let R be a relation defined on the set \mathbb{Z}^{+}as follows: $x R y \Leftrightarrow\left(\frac{x}{y}\right)$. Determine whether the relation is reflexive, symmetric, antisymmetric, transitive.

Exercise 13: Let R be a relation defined on the set \mathbb{N} as follows: $m R n \Leftrightarrow m-n>1$. Determine whether the relation is reflexive, symmetric, antisymmetric, transitive.

Exercise 14: Let R be a relation defined on the set \mathbb{N} as follows: $m R n \Leftrightarrow 3 /(m . n)$. Determine whether the relation is reflexive, symmetric, antisymmetric, transitive.

Exercise 15: Let R be a relation defined on the set \mathbb{Z}^{+}as follows: $m R n \Leftrightarrow m+n=20$. Determine whether the relation is reflexive, symmetric, antisymmetric, transitive.

Exercise 16: Let R be a relation defined on the set \mathbb{N} as follows: $m R n \Leftrightarrow 6 /(m . n)$. Determine whether the relation is reflexive, symmetric, antisymmetric, transitive.

