MATH 151

Equivalence Relations

Lecture 6

By Khaled A Tanash

ktanash@ksu.edu.sa

-... tanast

Exercise 1: Find all (distinct) equivalence classes of the equivalence relation

 $T = \{(a,a), (a,d), (b,b), (c,c), (c,e), (d,a), (d,d), (e,c), (e,e)\} \text{ on the set} A = \{a,b,c,d,e\}$

Exercise 2: Let *S* be equivalence relation on $B = \{1, 2, 3, 4, 5\}$ such that 1S3, 3S4, 2S5 and $2\S4$

- i. List all order pairs of *S*
- ii. Find all (distinct) equivalence classes of S

Exercise 3: Let *T* be equivalence relation defined on the set $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$ where $\Im(T) = \{\{1\}, \{2,3\}, \{4,5,6\}, \{7,8\}\}$

Exercise 4: Let $T = \{(a,a), (b,b), (b,d), (c,c), (d,b), (d,d)\}$ be a relation defined on $E = \{a, b, c, d\}$

- i. Show that T is equivalence relation
- ii. Find all equivalence classes of T

Exercise 5: Let S be the relation on \mathbb{Z} such that aSb if and only if $2/(a^2+b^2)$

- i. Show that *S* is an equivalence relation
- ii. Show that $\begin{bmatrix} x \end{bmatrix} = \begin{bmatrix} -x \end{bmatrix}$ for all integer x
- iii. Determine whether $2 \in [-4]$
- iv. Show that $[7] \cap [10] = \phi$

Kugled V sugg

Exercise 6: Let *S* be the relation on \mathbb{Z} such that aSb if and only if $a^2 - b^2 = a - b$

- i. Show that S is an equivalence relation
- ii. Find $\begin{bmatrix} 0 \end{bmatrix}$ and $\begin{bmatrix} -1 \end{bmatrix}$

Kugled A Janash

Exercise 7: Let *S* be the relation on \mathbb{Q} such that $x S y \iff (x - y) \in \mathbb{Z}$

- i. Show that S is an equivalence relation
- ii. Find $\begin{bmatrix} 1\\2 \end{bmatrix}$

`

Knaled A Tanash

Exercise 8: Let *R* be the relation on \mathbb{Z} such that *xRy* if and only if 4 is divides x + 3y

- i. Show that R is an equivalence relation
- ii. Determine whether $-2 \in [6]$

Knaled A Janash

Exercise 9: Let *R* be the relation on \mathbb{Z} as follows $x R y \Leftrightarrow 5/(6x - y)$

- i. Show that R is an equivalence relation
- ii. Determine whether $9 \in [4]$

Knaled A tanash

Exercise 10: Let *R* be the relation on $\mathbb{Z} - \{0\}$ such that *a R b* if and only if ab > 0

- i. Show that R is an equivalence relation
- ii. Find $\begin{bmatrix} 1 \end{bmatrix}$ and $\begin{bmatrix} -1 \end{bmatrix}$

Kugled & Janash

Exercise 11: Let *R* be the relation on \mathbb{N} as follows $aRb \Leftrightarrow (\sqrt{a} - \sqrt{b}) \in \mathbb{Z}$

- i. Show that R is an equivalence relation
- ii. Determine whether $9 \in [4]$

Kugled & Langsh

Exercise 12: Let *R* be the relation on \mathbb{Z} as follows $x R y \Leftrightarrow 4/(x^2 - y^2)$

- i. Show that R is an equivalence relation
- ii. Show that [1] = [n] for *n* is odd number

Knaled A Lanash

Exercise 13: Let *R* be the relation on \mathbb{Z} as follows $x R y \Leftrightarrow$ there exist integer *k* such that $x = 3^k \cdot y$

- i. Show that R is an equivalence relation
- ii. Determine whether $54 \in [2]$
- iii. Find [1]

Knaled A Tanash

Exercise 14: Let *R* be the relation on \mathbb{Q} as follows $x R y \Leftrightarrow (x - y)$ is even number

- i. Show that R is an equivalence relation
- ii. Show that [0] = [m] for *m* is even number and [1] = [n] for *n* is odd number

Kugled A Langsh

Exercise 15: Let *R* be the relation on \mathbb{Z} as follows $aRb \Leftrightarrow |a| = |b|$

- i. Show that R is an equivalence relation
- ii. Find [5]

Knaled A Lanash

Exercise 15: Let *R* be the relation on \mathbb{N} as follows $aRb \Leftrightarrow (a+b)$ is even number

- i. Show that R is an equivalence relation
- ii. Find [2]

Knaled A Lanash