## **MATH 151**

## partial ordering Relations

Lecture 7

By Khaled A Tanash

ktanash@ksu.edu.sa

\_.u.

**Exercise 1:** Let  $P = \{(1,1), (2,1), (2,2), (3,1), (3,2), (3,3), (4,4)\}$  be a relation on  $A = \{1,2,3,4\}$ 

- i. Show that *P* is partial order
- ii. Draw the Hass diagram of P
- iii. Determine whether P is total order

**Exercise 2:** Let  $P = \{(1,1), (1,3), (2,1), (2,2), (2,3), (3,3), (4,1), (4,3), (4,4)\}$  be partial order on the set  $A = \{1,2,3,4\}$ 

- i. Draw the Hass diagram of P
- ii. Determine whether P is total order

**Exercise 3:** Draw the Hass diagram representing the partial ordering relation

 $P = \{(1,1), (2,2), (3,3), (4,4), (1,2), (1,3), (1,4), (2,4), (3,4)\} \text{ on the set } A = \{1,2,3,4\}$ 

**Exercise 4:** Let T be a relation represent by Hass diagram. List all order pairs of T



**Exercise 5:** Let *T* be partial order relation on  $E = \{1, 2, 3, 4, 5\}$  represent by Hass diagram.

- i. List all order pairs of T
- ii. Determine whether T is total order



**Exercise 6:** Let *T* be partial order relation on  $E = \{l, m, n, o, p\}$  represent by Hass diagram.

- i. List all order pairs of T
- ii. Determine whether T is total order



**Exercise 7:** Let *T* be partial order relation on  $E = \{1, 2, 3, 4, 5\}$  represented by Hass diagram.

- i. List all order pairs of T
- ii. Determine whether T is total order



**Exercise 8:** List all order pairs of the partial order *P* on the set  $B = \{u, v, w, x, y, z\}$  represented by the Hass diagram below



**Exercise 9:** Let *S* be the relation on  $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$  such that  $aSb \Leftrightarrow a/b$ 

- i. Show that S is partial ordering relation
- ii. Is S totally ordering relation on A
- iii. Draw the Hass diagram for (A, S)

Knaled A Lanash

**Exercise 10:** Let  $A = \{2^m; m \in \{0, 1, 2, ...\}\}$ . Define relation T on A by:  $2^m T 2^n \Leftrightarrow m \le n$ 

- i. Show that *T* is partial ordering relation
- ii. Draw the Hass diagram for T on the set  $E = \{16, 8, 2, 64, 4\}$

Kugled & Langsh

**Exercise 11:** Let *P* be the relation on  $\mathbb{Z}^+$  such that  $x P y \Leftrightarrow x / (x + y)$ 

- i. Show that P is partial ordering relation
- ii. Is P totally ordering relation on
- iii. Draw the Hass diagram for P on the set  $E = \{2, 3, 4, 8\}$

Kugled & Janash

**Exercise 12:** Let *T* be the relation on  $\mathbb{Z}^+$  such that  $x T y \Leftrightarrow \left(\frac{x}{y}\right)$  is odd number

- i. Show that T is partial ordering relation
- ii. Is T totally ordering relation on
- iii. Draw the Hass diagram for T on the set  $E = \{1, 2, 3, 5, 6, 10, 15, 18\}$

Kugled A Langsh

**Exercise 13:** Let *P* be the relation on  $\mathbb{Z}$  such that  $x P y \Leftrightarrow x - y = 2k$ ;  $k \ge 0$ 

- i. Show that *P* is partial ordering relation
- ii. Is P totally ordering relation on
- iii. Draw the Hass diagram for P on the set  $E = \{0, 1, 2, 3\}$

Kugled & Laugsh