MATH 151

partial ordering Relations

Lecture 7

By Khaled A Tanash

ktanash@ksu.edu.sa

Exercise 1: Let $P=\{(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),(4,4)\}$ be a relation on $A=\{1,2,3,4\}$
i. Show that P is partial order
ii. Draw the Hass diagram of P
iii. Determine whether P is total order

Exercise 2: Let $P=\{(1,1),(1,3),(2,1),(2,2),(2,3),(3,3),(4,1),(4,3),(4,4)\}$ be partial order on the set $A=\{1,2,3,4\}$
i. Draw the Hass diagram of P
ii. Determine whether P is total order

Exercise 3: Draw the Hass diagram representing the partial ordering relation $P=\{(1,1),(2,2),(3,3),(4,4),(1,2),(1,3),(1,4),(2,4),(3,4)\}$ on the set $A=\{1,2,3,4\}$

Exercise 4: Let T be a relation represent by Hass diagram. List all order pairs of T

Exercise 5: Let T be partial order relation on $E=\{1,2,3,4,5\}$ represent by Hass diagram.
i. List all order pairs of T
ii. Determine whether T is total order

Exercise 6: Let T be partial order relation on $E=\{l, m, n, o, p\}$ represent by Hass diagram.
i. List all order pairs of T
ii. Determine whether T is total order

Exercise 7: Let T be partial order relation on $E=\{1,2,3,4,5\}$ represented by Hass diagram.
i. List all order pairs of T
ii. Determine whether T is total order

Exercise 8: List all order pairs of the partial order P on the set $B=\{u, v, w, x, y, z\}$ represented by the Hass diagram below

Exercise 9: Let S be the relation on $A=\{1,2,3,4,5,6,7,8,9,10\}$ such that $a S b \Leftrightarrow a / b$
i. Show that S is partial ordering relation
ii. Is S totally ordering relation on A
iii. Draw the Hass diagram for (A, S)

Exercise 10: Let $A=\left\{2^{m} ; m \in\{0,1,2, \ldots\}\right\}$. Define relation T on A by:
$2^{m} T 2^{n} \Leftrightarrow m \leq n$
i. Show that T is partial ordering relation
ii. Draw the Hass diagram for T on the set $E=\{16,8,2,64,4\}$

Exercise 11: Let P be the relation on \mathbb{Z}^{+}such that $x P y \Leftrightarrow x /(x+y)$
i. Show that P is partial ordering relation
ii. Is P totally ordering relation on
iii. Draw the Hass diagram for P on the set $E=\{2,3,4,8\}$

Exercise 12: Let T be the relation on \mathbb{Z}^{+}such that $x T y \Leftrightarrow\left(\frac{x}{y}\right)$ is odd number
i. Show that T is partial ordering relation
ii. Is T totally ordering relation on
iii. Draw the Hass diagram for T on the set $E=\{1,2,3,5,6,10,15,18\}$

Exercise 13: Let P be the relation on \mathbb{Z} such that $x P y \Leftrightarrow x-y=2 k ; k \geq 0$
i. Show that P is partial ordering relation
ii. Is P totally ordering relation on
iii. Draw the Hass diagram for P on the set $E=\{0,1,2,3\}$

