BCH 462- Biotechnology & Genetic engineering [Practical]

Lab (3) Extraction and Determination of Bacterial Proteins

Figure 1. Schematic representation of recombinant insulin production

Bacterial proteins

- **Bacterial protein** is a protein which is either part of the <u>bacterium structure</u> or produced by bacterium as a <u>part of its life cycle</u>.
- Proteins are very essential for most of the bacterial <u>metabolic functions</u> as well as for <u>cell integrity</u>.

- Studies on Bacterial proteins is beneficial because:
 - 1. It can impact human health. Bacterial protein can be **Toxic**, causing illness or death in an organism which has been infected including humans.
 - 2. Used as a **model** to gather data about the proteins associated with larger organisms.

Bacteria as biological factories

- Bacteria can produce foreign proteins from introduced gene using their own gene expression machinery.
- Scientists routinely **clone** the gene that encodes 'their' protein of interest and express large amounts of it in bacteria and other organisms.
- Many medicines and drugs are produced, for instance;
- A. Proteins hormones.
 - I. Insulin (for treating diabetes).
 - II. Erythropoietin (for treating anemia).
 - III. Growth hormones (for treating growth disorders).
- B. Antibiotics, vaccines and enzymes.
 - Pause and Think why scientist tend to lean toward protein therapy rather than gene therapy?

Review

Steps	Lab #1 [Plasmid Isolation]	Lab #2 [Transformation of Competent Cells]	Lab #3 [Estimation of Protein Concentration]				
1	Growth of the bacterial culture.						
2	Harvesting of the bacteria by centrifugation.						
3	-Lysis of the bacteria -Purification of plasmid DNA.	-Using CaCl2 solution and brief heat shock to transform the competent cells.	-Lysis of the bacteria -Estimation of protein concentration using Bradford's method.				

Practical Part 🧳

Aims:

- Extraction of total bacterial proteins.
- Determination of bacterial proteins using Bradford's assay.

Principle:

Isolation of bacterial proteins involves several steps:

- 1. Growth and induction of bacterial cultures.
- 2. Lysis of cells in a suitable buffer which achieved by sonication (20 kHz) for 30–60s.
- 3. <u>DNase</u> and <u>RNase</u> treatment for the removal of the nucleic acids.
- 4. Determine the protein concentration using suitable method (Bradford's assay).
- 5. Passage of the extract through an affinity resin and finally elution of proteins.

- Sonication refers to the process of applying sound energy to agitate particles in a liquid.
- Ultrasonic frequencies (>20 kHz) are usually used, so the process is also known as ultrasonication.

■ The method uses pulsed, high frequency sound waves to **agitate** and **lyse cells**.

Principle:

- Bradford method is used to determine the protein concentration, using **standard curve of concentrations**.
- The Bradford protein assay is based on the observation that the absorbance maximum for an <u>acidic</u> solution of Coomassie Brilliant Blue G-250 (*reddish brown*) shifts from 465 to **595** nm when binding to protein occurs (*blue form*).
- The intensity of the colored product is <u>linearly proportional</u> to the concentration of protein present in the solution.

Results:

Test tube	Distilled water [µl]	Stock BSA solution (62.5mg/L) [µl]	Sample [µl]	Protein concentration [mg/l]
Blank	200	-		
A	180	20		
В	150	50		
С	100	100		
D	50	150		
Е	-	200		
F (Unknown soluble proteins)	-	-	200	?
F'	100	-	100	?
G (Unknown insoluble proteins)			200	?
G'	100		100	?

